Parametric imaging ultrasound catheter

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S467000, C128S916000

Reexamination Certificate

active

06398736

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a catheter apparatus, more particularly to an underfluid ultrasound parametric imaging catheter apparatus.
BACKGROUND OF THE INVENTION
Medical Ultrasound
In the field of medical ultrasound, one acquires ever more knowledge of reality by solving problems and finding better explanations. Medical ultrasound over the past 25 years has evolved to become one of the most commonly performed imaging and hemodynamic examinations. Modem ultrasound machines can replicate those features previously obtained by more invasive means such as, cardiac catheterization. Those features attributable to invasive technologies at least include: 1) ability to obtain anatomic images, 2) ability to quantitatively assess function, 3) ability to measure hemodynamics, and 4) ability to visualize blood flow (i.e., an angiographic substitute). The advantages of using ultrasound technology include: 1) non-invasive, 2) no ionizing radiation (a safe repeatable energy source), 3) comparatively low cost, 4) obtaining hemodynamics as well as images, 5) technology capable of being fabricated into different sizes and shapes (e.g., ultrasound tipped catheter), 6) rapid temporal and spatial resolution, and 7) portable, etc.
Computer Interface
With the incorporation of more sophisticated computer interfacing, in the later part of the twentieth century, diagnostic ultrasound has entered into the era of information acquisition. The prerequisites for this change include use of newer sophisticated information acquisition and management techniques, reconstruction or assimilation of multiple forms of information, segmentation of the pertinent or most meaningful information, quantitation and display of the result. The acquired information represents the physiology and structure of the insonated environment (i.e., tissue, muscle, blood, etc.). Information acquisition techniques include new Doppler technology, such as tissue Doppler imaging (TDI) and strain-rate imaging (SRI), harmonic imaging, pulse-inversion imaging, and pulsed and intermittent imaging, etc.
Ultrasound Catheter
A recent innovation in diagnostic medical ultrasound is the development and introduction of invasive ultrasound tipped catheters including (U.S. Pat. Nos. 5,325,860, 5,345,940 and 5,713,363 issued to Seward et al.). These catheters allow one to obtain high-resolution images from within the confines of fluid filled spaces (i.e., heart, urinary bladder, blood vessels, etc.). However, these newest catheters have the capacity not only to obtain an image but in addition also to obtain more unique physiologic ultrasound information which to date has not been feasible using a rotating ultrasound element catheter. For example, full Doppler capabilities are now possible with the ultrasound catheter and include pulsed and continuous wave Doppler, color flow Doppler, tissue Doppler, etc. Newer evolving acquisition technologies include pulse inversion, harmonic imaging, strain-rate imaging, intermittent imaging, etc.
New Image Paradigm
Information can be fractionated into its small individual digital components, each unit is “parameterized” (i.e., has quantifiable value), and groups of related units can be expressed as a volumetric image. Parametric imaging referred herein is the term applied to the acquisition of various types of quantifiable events and in the case of ultrasound represents the display surrogates information representing anatomic, functional, hemodynamic, or physiologic events. A parameter is defined as a mathematical quantity or constant whose value varies with the circumstances. Examples include blood pressure, pulse rate, and an infinite number of other visible and non-visible events which permeate our reality. The quantifiable event can be measured and expressed as a change over time, for example a change in pressure over time, is most often graphed or charted as a graph (e.g. a pressure curve) with the magnitude of pressure on the ordinate and time on the abscissa. However, today a sophisticated imaging device can record such events throughout a field or volume of interest (i.e., a volumetric two- or three-dimensional image of the spatial distribution of the event). Fields of specific individual or group events can then be displayed as a geometric image as opposed to a graphic or one-dimensional display of a single continuous happening. The analogy is being capable of simultaneously measuring numerous similar or dissimilar individual events and instead of graphing the result, displaying the phenomena as a dynamic geometric image (instead of looking at a single bee in a hive, the action of the whole hive is assessed simultaneously).
The observed events can occur in a regular or irregular manner, distribute in a predictable or unpredictable manner, or remain constant or change randomly, etc. The events are virtually always continuous or cyclical (repetitive) but can be broken down into smaller and smaller components, which can be looked upon as quanta (i.e., elemental units) and displayed in a computer presentation as quantifiable pixels. It is the elemental unit(s), which can be pictured as changing over time (i.e., time and magnitude, such as pressure or temperature). However, the whole field of units (quanta) is best presented as a distribution of measurable units dispersed throughout a defined spatial domain (for example, the distribution of pressure throughout a cavity of the heart or temperature of the body). A parametric imager enables the presentation of quantifiable, information as a geometric picture of a continuous event. The event becomes the image while the fundamental image or source information becomes subservient or nonessential. At any moment in a temporal sequence, the event can be captured as a volume with a specific quantifiable distribution. However, when it is viewed over time, the event is displayed as a moving surface, and or volume (i.e., a two-, three-, fourth-dimensional or higher-dimensional image). Event information may include point of initiation (epicenter: for example, a very hot infected ear causing an increase in body temperature), distribution (epicenter spreading outward), moment to moment change (evolution or wave front distribution), decay (transient, periodicity, etc.), and others. In topological language, the point is called a repeller and the expanding phenomenon an attractor. An attractor, in general, is a region of space that “attracts” all nearby points as time passes. To the human senses, the imaged event may be a normally visible phenomenon such as the contracting wall of the heart, or a non-visible phenomenon (referred to as higher-dimensional events) such as the distribution of electricity, or in the case of ultrasound electricity can be pictured through a display of a parametric surrogate. The manipulation and display of data are solved by quantum mathematical concepts. The parametric image is a geometric image of a quantifiable phenomenon but not a mere picture of that phenomenon (for example: the motion of muscle contraction is visible, however, a parametric surrogate of contraction would be the display of change itself). The parametric image often does not appear similar to the fundamental event.
Quantum Mathematics Concept
Generally, all physical processes are quantum-mechanical. The quantum theory of computation is an integral part of the fundamental understanding of reality. Quantum solutions applied to information, displayed as a geometric image, provide a revolutionary mode of explanation of physical reality. The human does not accord equal significance to all our sensory impressions but is known to perceive reality best when presented as an image. Thus, given the fact that general theories about nature are best expressed in quantifiable mathematical form and that geometric images are the most mature expression of a mathematical computation, it is logical that a parametric image solution will have considerable acceptance as a pleasing as well as quantifiable diagnostic imaging solution. As the trend towards faster, more compact sophisticated

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Parametric imaging ultrasound catheter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Parametric imaging ultrasound catheter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Parametric imaging ultrasound catheter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2927596

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.