Classifying – separating – and assorting solids – Sifting – Elements
Reexamination Certificate
1998-08-06
2001-02-27
Walsh, Donald P. (Department: 3653)
Classifying, separating, and assorting solids
Sifting
Elements
C209S268000, C209S273000, C209S305000, C209S306000, C209S385000, C209S389000, C209S300000
Reexamination Certificate
active
06193073
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to the rotating pressure screening of screening paper fiber stock.
The term “foil” or “impulse member” as used herein is not necessarily limited to hydrodynamically-shaped elements or elements that resemble air foil sections, although the latter are commonly used for impulse foils in rotating apparatus for screening paper fiber stock. However, these terms are intended to apply to any kind, and any shape, of a disrupter which may be, for example, a protuberance on the surface of a drum-type rotor.
In the pressure screening of paper fiber stock for removing impurities or for fractionating suspensions of paper fibers in a pulp slurry, it is common practice to provide a rotor that has multiple impulse members mounted on arms or mounted on a support drum, with respect to a discreet area or surface of a screen. Thus, as an example in such a pressure screen, equally spaced arms and attached foils may be mounted for rotation in close proximity to a screen surface, as shown for example in Weber U.S. Pat. No. 4,166,028, Martin U.S. Pat. No. 4,851,111 or Chupka U.S. Pat. No. 5,078,275. In such apparatus, as few as two arms and foils in diametric relation have been used, and arrangements with five, eight and eleven foils, have been tried. In those embodiments in which the foils are supported on radially extending arms, the use of three or more such arm-supported foils has become a preferred and common configuration. This preference has been used, in part, to create a more uniform distribution of impulse forces at the screen itself, so as to reduce screen flexure, stress, and possible breakage due to metal fatigue. On drum style rotors, two or more foil elements are used, for any given axial position or region of the rotor or cylinder.
Cylindrical screen baskets of the kind represented in U.S. Pat. Nos. 4,166,028 and 4,851,111 are commonly fed with incoming stock suspension at one axial end of the screen, as at the upper end, or at the lower end, as shown in the examples of these patents. The stock consistency is at its lowest value at the inlet end of a screen, and by reason water extraction through the screen the consistency increases to a maximum at the outlet end. The screening energy that is imparted to the stock by the rotating foils must be sufficient as to disrupt the fiber network and break up fiber flocs to allow the individual fibers and fines to flow through the openings or slots of the screen. Also, this energy causes contaminants within the fiber matrix to loosen and be separated by the screen from the accepted fiber.
Since screening is energy costly, it is desirable to have the energy intensity in the boundary layer on the screen plate surface close to the minimum that is required for the necessary fluidization of the fiber mass. If the energy intensity is too great, mixing turbulence occurs which reduces effective screening. On the other hand, if the energy intensity imparted by the foils is too low in the boundary layer at the screen inlet surface, the screening process becomes ineffective, and primarily only washing and dewatering of the fiber suspension will occur.
Since conventional screen rotors create a uniform impulse intensity over the axial length of a cylindrical screen, greater energy intensity is imparted to stock at the inlet end or inlet zone than is actually necessary to fluidize the lower consistency pulp. As a result, energy is wasted, and contaminants may be pushed through the screen openings. When an attempt is made to balance the condition by controlling the energy input, then the energy intensity at the outlet end can become too low to properly fluidize the thickened stock. Accordingly, a more energy effective screening can be accomplished by tailoring the rotor and foil design to individual screening zones.
Compensation for the change in stock consistency along the axial length of a cylindrical screen has been attempted by varying the spacing of protuberances on a drum-type rotor to a maximum clearance at the input end and a minimum clearance at the output end. However, this compensation technique is relatively ineffective since it results in a substantial spacing of the impulse inducing members from the screened surface at the inlet end, and well beyond the boundary layer at the screen inlet surface where fiber mat disruption is required for effective screening.
Accordingly there is a need for improved rotor designs which provide efficient screening with less overall energy.
SUMMARY OF THE INVENTION
Applicants have discovered that improved power, efficiency and screening in pressure screening apparatus may be achieved by rotor constructions that are provided, at least at the inlet end, with only a single rotating foil element at a given annular position or zone of the screen or the rotor. Embodiments incorporating this concept are disclosed.
A single foil rotating within a conventional cylinder type screen basket about an annular zone in close proximity to a screen surface has the advantage of effective disruption of the fiber mat at the screen surface with lower energy as compared to two or more such foils rotating at the same screen zone adjacent the same surface area at the same speed. The use of a single arm and foil has the important advantage that there is a corresponding lower tendency to cause the fluid mass within the basket to rotate, so that the foil moves through relatively undisturbed fluid regions throughout its circular path, undisturbed by turbulence induced by a preceding foil. Also, the relative velocity vectors over the foil are not reduced by the fact that the foils have caused the fluid mass within the cylinder to rotate in the same direction as that of the foils. In other words, the use of a single foil assures that the relative velocity between the foil and the fluid remains at the maximum and more nearly represents the actual rate of movement of the foil over the surface. Accordingly, the speed of foil movement can be reduced while obtaining the same production rate as with conventional multi-foil rotors.
Such a single foil rotor can, according to this invention, be used alone, or in combination with other single foil rotors, or in combination with conventional multiple foil rotor portions operating at regions of higher stock consistency within the screening member. Test results have indicated that the power consumption of foil-type screening apparatus is directly related to the number of foils that are employed so that power consumption can be reduced by the use of a single foil. This invention also permits fewer foils to be employed in general without decreasing the screening capacity of the apparatus, by placing a single foil at a screening zone near the inlet section of the screen where less energy is required, and by the use of a design in which only a single foil is rotated over a discrete annular portion or area of the screen.
A further aspect of the invention is a method of operating rotating impeller screening apparatus for screening or cleaning a suspension of paper fiber stock in water, having impurities therein, for removing the impurities from the stock. The method includes the steps of applying the stock suspension under pressure to the inlet surface of the screen, where the screen has screening openings that extend between an inlet surface and an outlet surface, and continuously rotating or causing to rotate, relative to the screen, a single disrupter only relative to and adjacent to one of said screening surfaces and causing a single moving disruption or pressure impulse at such surface to prevent blinding of the screen openings by the fibers or impurities in the stock. While the disclosure herein relates to the moving of a single disrupter only adjacent an inlet surface of the screen, the novel concepts of the invention may be achieved by causing a disrupting wave or a single disrupting wave or impulse wave to be applied at the outlet surface, and in either case, the advantages of the invention may be realized by rotating the screen relative to the disrupter o
Chupka David E.
Seifert Peter
Vitori Christopher M.
Biebel & French
Schlak Daniel
Thermo Black Clawson Inc.
Walsh Donald P.
LandOfFree
Paper stock screening apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Paper stock screening apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Paper stock screening apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2589777