Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
2001-12-14
2003-11-25
Lee, Benjamin C. (Department: 2632)
Communications: electrical
Condition responsive indicating system
Specific condition
C340S572100, C235S383000, C235S385000, C235S487000
Reexamination Certificate
active
06653940
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a method for preventing the theft or misappropriation of one or more paper rolls, particularly of those used to produce sales receipts from cash registers.
BACKGROUND OF THE INVENTION
A retailer must return cash or credit to an individual if a receipt is produced showing a sale, even if the receipt is fraudulent and the merchandise stolen. Thus, great lengths have been taken to prevent the theft or misappropriation of the paper rolls used for cash register receipts by third parties who would fraudulently claim sales have occurred, although they have actually never taken place. Consequently, numerous well known processes and methods have been directed to protecting retail register receipts by marking the paper itself, including using invisible inks, thermal inks, scratch off inks, multicolor and split ribbons to produce two color numbers and letters (e.g., U.S. Pat. No. 4,957,312), and adding a component to the ribbon which is visible only under ultraviolet (UV) illumination (e.g., U.S. Pat. No. 3,599,229).
Complex procedures have been tried, such as printing fixed information on register rolls with photoluminescent (UV responsive) ink, followed by the addition of variable information in UV responsive ink by the retailer at the register (e.g., U.S. Pat. No. 5,209,513) in an attempt to spot the return of merchandise covered by the fraudulent sales slip. However, none of these methods can effectively prevent fraud on the retailer if a preprinted roll of paper to be used in the register for receipts is stolen before it is ever used, permitting the thief to print his own register receipt to match stolen merchandise for “return.” Likewise, the methods do not prevent a thief from generating and showing a fraudulently generated receipt when asked to show a receipt upon leaving the store with merchandise. Thus, a need existed, which is met by the present invention, for an anti-theft mechanism to prevent the theft of the paper roll itself.
Electronic article surveillance (EAS) security systems for detecting and preventing unauthorized removal of articles or goods from retail establishments and/or other facilities, such as libraries, are well known and widely used. In general, such security systems employ a label or security tag, which is affixed to, associated with, or otherwise secured to an article or item to be protected or its packaging. Security tags may take on many different sizes, shapes, and forms, depending on the particular type of security system in use, the type and size of the article, etc. In general, such security systems detect the presence of a security tag as the article to which it is attached passes through a security or surveillance zone or passes by or near a security checkpoint, interrogation zone or surveillance station.
Certain prior art security tags work primarily with radio frequency (RF) electromagnetic field disturbance sensing electronic security systems. Such electronic security systems generally establish an electromagnetic field in a controlled area through which articles must pass when being removed from the controlled premises. A tag having a resonant circuit is attached to each article, and the presence of the resonant circuit in the controlled area is sensed by a receiving portion of the system and an alarm is activated to denote the unauthorized removal of an article. Some markers of this type are intentionally removable at the checkout counter upon payment for the merchandise. Other types of markers are deactivated upon checkout. For instance, the resonant circuit can be deactivated, detuned, shielded, or removed by authorized personnel from an article following authorization (i.e., purchased or checked out) prior to removal from the premises. This permits passage of the article through the controlled area without activation of the alarm. On the whole, such mechanisms are successful although details, such as background noise and reliability can be negative factors in their use.
It is a common practice for the presence of a marker to be identified by detecting a signal reradiated by the marker in response to the field present in the interrogation zone. One type of EAS system is referred to as a harmonic system because it is based on the principle that a magnetic material passing through a magnetic field having a selected frequency disturbs the field and produces harmonic perturbations of the selected frequency. Such systems have been used for many years to provide security in retail establishments wherein the EAS tags are attached to the individual items of inventory within a store. The detection system is tuned to recognize certain harmonic frequencies and, if present, activates an alarm.
These markers may be integrated with a price label attached by adhesive to an article of merchandise, or imbedded or incorporated in the packaging for the article or in the article itself (e.g., U.S. Pat. No. 4,063,229). Other types of harmonic EAS systems are based on markers which include a thin strip or wire of magnetic material that responds to an alternating interrogation signal (e.g., U.S. Pat. Nos. 4,660,025 and 4,980,670). Such alarms include audible alarms and flashing lights that must be deactivated by the cognizant store personnel. U.S. Pat. No. 4,413,254 provides a good summary of the technology underlying conventional EAS systems.
Another type of EAS system employs magnetomechanical markers that include a magnetostrictive element (e.g., U.S. Pat. No. 4,510,489). Markers used in magnetomechanical systems are typically formed of a ribbon-shaped length of a magnetostrictive amorphous material contained in an elongated housing in proximity to a bias magnetic element. The magnetostrictive element is fabricated such that it is resonant at a predetermined frequency or bursts when the bias element has been magnetized to a certain level. The resulting signal radiated by the marker is detected by detecting circuitry.
As retail stores and shopping malls become larger, it is increasingly likely that both harmonic and magnetomechanical EAS systems will be in use in the same facility. For example, one department of a store may employ a magnetomechanical EAS system while another department may employ a harmonic EAS system. Common checkout counters may be shared by both departments, requiring checkout counter facilities to recognize and manage both types of markers, and thereby permitting retailers or manufacturers to use either type of marker without requiring additional scanning equipment at the checkout counter or security stations.
In order to improve the efficiency of operation of retail establishments, it has been proposed that EAS markers, including magnetomechanical markers, be applied to the items of merchandise before shipment to the retail establishment (e.g., U.S. Pat. No. 4,510,489). For example, it has been proposed that markers may be attached to the goods by their manufacturers before shipping. This practice has been called “source tagging,” which means that an EAS marker or “tag” is applied to goods at the source of the goods. Techniques for “source tagging” goods that will ultimately be subjected to electronic article surveillance at a retail establishment include, e.g., U.S. Pat. No. 3,665,449, wherein a ferromagnetic strip is embedding into a library book; U.S. Pat. No. 4,151,405, wherein ferromagnetic strips are embedded into plastic, paper, wood, aluminum, stainless steel, etc; U.S. Pat. No 4,626,311, wherein marker elements are embedded into a thermoplastic holder which is then fused within a garment; U.S. Pat. No. 4,686,154, wherein a tag is concealed within a seam or lining of an article of clothing; and U.S. Pat. No. 4,835,028, wherein a magnetostrictive wire is embedded in account for the stresses and degradation of magnetic properties which occur when magnetic elements are embedded as described. Consequently numerous additional methods have been disclosed to overcome such deficiencies and improve performance (e.g., U.S. Pat. No. 5,499,015).
Nevertheless, conventional EAS systems are not f
Dilworth Paxson LLP
Eastern Ribbon & Roll Corp.
Lee Benjamin C.
McConathy Evelyn H.
LandOfFree
Paper roll anti-theft protection does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Paper roll anti-theft protection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Paper roll anti-theft protection will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3160679