Panoramic night vision goggles

Optical: systems and elements – Compound lens system – Telescope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S407000, C359S420000, C359S480000, C359S481000, C359S353000, C359S630000, C002S447000

Reexamination Certificate

active

06201641

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a binocular-type viewing system having a substantially enlarged field of view that can be used preferably in low light and low gravity conditions.
2. Discussion of Related Art
Existing night vision systems have many applications in every day life. Perhaps the most well known use for night vision systems is by the military when performing night time maneuvers. The night vision systems permit vision under very low light conditions by converting incoming infrared and/or visible light from a viewed scene to an intensified visible light image. During night time maneuvers, military personnel are often performing other tasks, such as piloting an aircraft or driving a vehicle, which require the freedom of their hands while they are scanning the territory. Accordingly, night vision systems have been developed to be worn upon the head of a user, such as goggles being secured directly on the head or by being mounted to a helmet or a visor.
Placing a night vision system on the head of a user places significant constraints upon the optical design of the system. For example, goggles worn upon the head of a user must be both compact and light in weight because excessive weight or front-to-back length of the goggles can cause the goggles to exert large moments on the user's head causing severe instability problems and preventing their effective use in applications in which the user's head may be subjected to high gravitational or centrifugal loads. Furthermore, in a wide field of view optical system, the focal length of the eyepiece optics must be shortened correlatively that of the wide angle objective for unity magnification; and, in night vision goggles, this results in insufficient eye relief between the eyepiece optics and the eye, which not only causes discomfort to the user, but also interferes with the ability to position a helmet visor, eyeglasses and other structures between the goggles and the eyes of the user. In order to compensate for inadequate eye relief, prior night vision goggles have generally been limited to providing a field of view of no more than about 40 degrees.
Night visions goggles have been used in military aviation for several years with fields of views ranging from 30 degrees (Early Cat's Eyes night vision goggles from GEC-Marconi Avionics) to 45 degrees (NITE-OP and NITE-Bird night vision goggles, also from GEC-Marconi Avionics). The vast majority of night vision goggles used in military aviation have a 40 degree field of circular view (AN/AVS-6 and AN/AVS-9). A major limitation of such prior art devices is that increased field of view could only be obtained at the expense of resolution since each ocular uses only a single image intensifier tube and each image intensifier tube has a fixed number of pixels. Therefore, if the fixed numbers of pixels is spread over a larger field of view, then the angular subtense per pixel increases, which translates into reduced resolution. Understandably increased field of view is a major enhancement desired by military aviators, closely followed by resolution. In conventional goggles, both eyes also typically see the same field of view, i.e., there is a 100-percent overlap of the image viewed by both eyes of the observer. Such a limited field of view greatly restricts the effectiveness of the night vision apparatus.
U.S. Pat. No. 5,229,598 addresses the above-mentioned problems and discloses a compact, lightweight, night vision system capable of providing an enlarged field of view of up to 60 degrees with improved visual acuity and sufficient eye relief.
In addition to night vision systems, other imaging systems, such as handheld binoculars, typically provide a rather limited field of view; and it would be desirable to provide such systems with increased fields of view as well.
SUMMARY OF THE INVENTION
The present invention regards a binocular-like vision system for enabling an observer to view an object. The system includes an input end that receives light from the object and an optical transfer system that receives the light received from the input end and transfers the received light to an image intensifier which intensifies the received light, wherein the intensified received light is transferred to and transmitted out of an output end of the system, wherein the light transmitted out of the output end forms a field of view of the object that is greater than a 60-degree horizontal field of view.
Another aspect of the present invention regards a binocular-like vision system for enabling an observer to view an object. The system includes a first optical component having a first input end that receives light from the object and a first output end that receives light from the first input end, wherein the first output end defines a first optical axis along which light received from the first input end is transmitted. A second optical component having a second input end that receives light from the object and a second output end that receives light from the second input end, wherein the second output end defines a second optical axis along which light received from the second input end is transmitted. A third optical component comprising a third input end that receives light from the object and a third output end that receives light from the third input end, wherein the third output end defines a third optical axis along which light received from the third input end is transmitted, wherein light transmitted along the first, second and third optical axes forms a field of view comprising a first portion having a monocular effect on the observer and a second portion having a binocular effect on the observer.
Another aspect of the present invention regards a binocular-like vision system for enabling an observer to view an object. The system includes a first optical component having a first input end that receives light from the object and a first output end that receives light from the first input end, wherein the first output end defines a first optical axis along which light received from the first input end is transmitted. A second optical component having a second input end that receives light from the object and a second output end that receives light from the second input end, wherein the second output end defines a second optical axis along which light received from the second input end is transmitted. A third optical component having a third input end that receives light from the object and a third output end that receives light from the third input end, wherein the third output end defines a third optical axis along which light received from the third input end is transmitted, wherein light transmitted along the first, second and third optical axes is simultaneously transmitted from the binocular-like vision system to the observer.
In a further preferred embodiment of this invention, a panoramic night vision goggle (PNVG) is provided that, like the previous embodiment, features a partial overlap 100-degree horizontal by 40-degree vertical intensified field of view. Again, the central 30-degree horizontal by 40-degree vertical field of view is completely binocular, while the right 35 degrees is still seen with the right eye only and the left 35 degrees is viewed by the left eye only. Additionally, a thin line of demarcation separates the binocular scenes from the outside monocular scenes. This embodiment also utilizes the newly developed 16-mm image intensifier tube, dual fixed eyepieces, which are tilted and fused together, and four objective lenses, the inner two being adjustable and the outer two being fixed. The inner optical channels are not folded and are designed with fast F/1.05 objective lenses. The outboard channels use the folded inner channel optics design with F/1.17 objective lenses. The effective focal length of the eyepiece is 24.0 mm, while the physical eye clearance has been increased to 27 mm. All of the mechanical adjustments currently used on the AN/AVS-6 and AN/AVS-9 are the same (i.e., tilt, independent inter-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Panoramic night vision goggles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Panoramic night vision goggles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Panoramic night vision goggles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2452518

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.