Static structures (e.g. – buildings) – Module or panel having discrete edgewise or face-to-face... – With joining means of dissimilar material and separate from...
Reexamination Certificate
1997-05-19
2001-01-16
Safavi, Michael (Department: 3635)
Static structures (e.g., buildings)
Module or panel having discrete edgewise or face-to-face...
With joining means of dissimilar material and separate from...
C052S081500, C052S282100, C403S403000
Reexamination Certificate
active
06173547
ABSTRACT:
The field of the invention pertains to enclosed structures and, in particular, to light-weight easy-to-assemble structures.
The goal of inventing strong, light-weight, insulated structures that are easy-to-assemble and disassemble by few people with minimal instruction and simple tools for temporary or permanent uses has long been sought by designers and inventors. Rapid deployment and ease of assembly is an absolute necessity for disaster relief situations and many military uses.
Ease of disassembly is advantageous for temporary uses including military, disaster/refugee facilities and work-camps. In an era of massive natural and man-made disasters and population dislocations, the need for quickly assembled and disassembled temporary housing and utility buildings has become more and more acute. Also, in an era of increasing resource scarcity, efficient use of materials; efficient manufacture; and minimal waste are other priorities for a successful design.
There have been different strategies of design with the goal of achieving these ends. Tents have traditionally been used for temporary housing but lack insulation and security. For disaster relief, tents are basically one-time-use devices because ultraviolet radiation, strong winds and chemical rain take their toll on the cloth. A more permanent, substantial, re-useable structure is needed for many uses.
To improve the strength-to-weight ratio over “conventional” structures, regular polyhedra and crystalline geometric shapes have historically been used. A large number of patented structures have attempted (with various amounts of success) to use a variety of non-standard shapes and specially manufactured parts to achieve ease of manufacture, assembly and light weight.
The geodesic domes of R. Buckminster Fuller (U.S. Pat. No. 2,682,235); the rhombic triacontahedral structures of Steve Baer (U.S. Pat. No. 3,722,153) (which he dubbed “Zomes”); the modified rhombic triacontahedral structures of Fred Golden (U.S. Pat. No. 4,621,467); and the crystalline structures of Fred Golden (U.S. Pat. No. 4,425,750) are the most relevant examples to the instant device. All of these patents are variations on the same basic theme.
However, Fuller and most other dome designs require separate frame and skin assemblies similar to “standard” construction which precludes their use where maximally quick, easy assembly is required. In domical structures, curved walls create unfamiliar spaces for habitation and make it difficult to use standard doors and windows.
Panelizing structures, even conventional structures, have many advantages in reducing total parts, improving strength and easing assembly. Golden's panelized rhombic triacontahedron (U.S. Pat. No. 4,621,467) is an example of an “alternative” geometric structure of panelized design. Another example is the Deca Dome constructed by applicant in Ann Arbor, Mich. and featured in
Fine Homebuilding,
April/May, 1988.
Fuller's “Dymaxion Dwelling Unit” discussed in
The Dymaxion World of R. Buckminster Fuller
was an early use of both panelizing and alternative geometry. Its failure to achieve wide-spread usage is an issue for historians. Although it required quite expensive tooling to produce, it was not out of the reach of a large industrial concern and its potential promise was never fulfilled.
Golden's patents use panels and connectors, continuously connected at their edges, in his crystalline units (U.S. Pat. No. 4,425,750). However the irregular, angular walls again make standard doors and windows difficult and complicate assembly. The Vertical-walled, Rhombic Triacontahedral structures of Golden (U.S. Pat. No. 4,621,467) solve numerous problems by incorporating the frame; interior and exterior walls into a panel-and-connector system. The prior art fails to disclose a structure that is truly easy to assemble and disassemble yet insulated, substantial and secure enough for permanent and temporary uses and manufactured from an absolute minimum of differing parts.
SUMMARY OF THE INVENTION
A building system comprised of panelized interconnectable, modified rhombic triacontahedral structures comprises wall and roof panels continuously connected along their edges by connectors whose profiles allow panels to swing, snap and slide together to form a building and unfasten for easy disassembly and re-use to form a building at a new location.
A regular rhombic triacontahedron has 30 identical rhombic facets which form a spheroid. The invention disclosed herein, in its most basic configuration, is a ⅔ rhombic triacontahedron (i.e. 20 facets). The invention modifies the regular rhombic triacontahedral shape by utilizing ten facets as roof panels and ten elongated vertical panels as walls. The ten rhombic facets which form the roof are five upper roof ring panels and five lower roof ring panels. Ten vertical panels form the walls by elongating the rhombi and cutting the bottoms horizontally where they meet the ground or foundation. Wall height and, therefore, roof height is variable as required by the intended use of the structure. Removing the top tips of the five upper roof ring panels creates an opening for a skylight and ventilation.
The “basic” structure uses 20 panels connected by 35 connectors with profiles angled at 144° to create a structure whose footprint is a decagon. The polyhedron created has all dihedral angles of 144°. The result is a strong, light-weight structure of aerodynamic shape which resists lifting-off in cross winds. Most wind conditions, even high winds, push the structure downward due to the shape of the roof and aerodynamic walls.
A relatively large rectangular-faced building wall is created by replacing two adjacent wall panels with one double-wide rectangular panel, bisecting one lower roof panel and using 126° connectors on three panel edges.
A structure with one pair of concave walls is created by eliminating one of the lower roof ring panels; extending two adjacent wall panels to the height of the lower edges of two upper roof panels and joining the two roof panels to the walls and to the concave wall panels using 5, 108° connectors.
Both optional designs create room for taller doorways than the basic structure with minimal loss of floor area and provide some visual relief from the basic structure's regularity.
Structures may be connected face-to-face or nested. Sealing joints for weather-tightness between basic structures requires a flexible gasket.
The connector's shape allows any type of stress-skin or solid panel to be used. The preferred embodiment uses extremely light weight foam-core panels with thin skins of hard, high tensile strength material such as plastic or aluminum. Greater impact resistance may be created by using steel skins although increased weight reduces portability. Projectile resistance may be created and light weight retained by using high molecular density plastic skins such as Dupont Kevlar™, reinforced resin and connectors of carbon fiber reinforced composites. Such high performance materials increase cost.
Connectors may be fastened to panels at the factory using permanent fasteners. When the building is assembled at the site, the open side of the connector is attached to a matching panel. When all wall panels are assembled, a pair of compression rings (nylon straps, each with a tensioning device) around the perimeter of the structure at the base and top of the wall panels retains the panels in place for temporary use. Permanent structures add fasteners or permanent adhesive to each connection.
Velcro® (hook and loop) fasteners on wall panels and mating Velcro® on the short arm of the connector profile assist speedy assembly and disassembly of the walls. Two-sided tape; adhesive backed gasket; or mechanical fasteners of various types may also be used to fasten and seal panels and connectors depending on the permanence and seal desired. Rivets, self tapping sheet-metal screws; and an extremely wide variety of commercially available plastic and metal fasteners may be used to retain panels.
The short, top arm or flang
Deimen James M.
Safavi Michael
LandOfFree
Panelized, edge-connected, modified-rhombic triacontahedral... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Panelized, edge-connected, modified-rhombic triacontahedral..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Panelized, edge-connected, modified-rhombic triacontahedral... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2478028