Pancreatic cancer genes

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S024300, C435S006120, C435S091100

Reexamination Certificate

active

06262249

ABSTRACT:

TECHNICAL AREA OF THE INVENTION
The invention relates to the area of diagnosis and treatment of pancreatic cancer and dysplasia. More specifically, it relates to polynucleotides which are differentially regulated in pancreatic cancer and dysplasia.
BACKGROUND OF THE INVENTION
Pancreatic cancer is the fifth leading cause of cancer death in the United States. According to the American Cancer Society, approximately 28,000 people will die of pancreatic cancer in the United States in 1998. A high risk of developing pancreatic cancer, without a corresponding increase in the risk of developing other cancers, may be passed along in some families. Pancreatic cancer is most likely caused by an accumulation of mutations in specific cancer-causing genes. Pancreatic cancer is very aggressive and chemotherapeutic agents which may be active against other malignancies do not work effectively when used for pancreatic cancer.
The majority of cells in the pancreas are in the exocrine glands, which produce pancreatic enzymes, and in the ducts that carry the pancreatic enzymes to the bile duct and to the small intestine. Cancers of the exocrine cells of the pancreas are usually adenocarcinomas. Pancreatic adenocarcinomas usually begin in the ducts of the pancreas, but may sometimes develop from the acinar cells. About 95% of cancers of the pancreas are adenocarcinomas. Less common cancers of the exocrine pancreas include adenosquamous carcinomas, squamous cell carcinomas, and giant cell carcinomas.
Because pancreatic cancer is an aggressive cancer with very high mortality, there is a need in the art for genes that are up- or down-regulated in tumor progression. Such genes are useful for therapeutic purposes and for diagnosis of pancreatic as well as other cancers.
SUMMARY OF THE INVENTION
The invention provides isolated polynucleotides comprising coding regions or portions of genes whose expression is mis-regulated in cancer and dysplasia.
The invention also provides isolated proteins and protein fragments whose expression is mis-regulated in cancer and dysplasia.
The invention further provides an antibody preparation which specifically binds to a polypeptide the expression of which is mis-regulated in cancer and dysplasia.
The invention provides a method for diagnosing cancer and dysplasia.
The invention still further provides therapeutic compositions useful for treating cancer and dysplasia.
These and other objects of the invention are provided by one or more of the embodiments described below. One embodiment of the invention provides isolated polynucleotides comprising at least twelve contiguous nucleotides selected from the group of polynucleotide sequences as shown in SEQ ID NOS:1-15.
Another embodiment of the invention provides isolated polypeptides comprising at least six contiguous amino acids encoded by a polynucleotide selected from the group consisting of the polynucleotide sequences as shown in SEQ ID NOS:1-15.
Even another embodiment of the invention provides an antibody preparation which specifically binds to a polypeptide comprising at least six contiguous amino acids encoded by a polynucleotide selected from the group of polynucleotide sequences as shown in SEQ ID NOS:1-15.
Yet another embodiment of the invention provides isolated nucleotide probes consisting of a sequence selected from the group consisting of the polynucleotide sequences shown in SEQ ID NOS:1-15.
Still another embodiment of the invention provides a method of diagnosing cancer. The amount of a polypeptide expressed from a polynucleotide having a sequence as shown in SEQ ID NO:12 in a test sample of tissue of a human suspected of being cancerous is determined. The amount of said polypeptide is also determined in a human tissue which is normal. The determined amounts are then compared. A test sample which contains less of the polypeptide than the normal tissue is identified as cancerous.
A further embodiment of the invention provides an additional method of diagnosing cancer. The amount of specific mRNA molecules in a test sample of tissue suspected of being cancerous and in a human tissue which is normal are determined. The mRNA molecules to be measured are complementary to the minus strand of a double-stranded polynucleotide sequence. The double-stranded polynucleotide sequence is shown in SEQ ID NO:12. The determined amounts of mRNA molecules are compared. A test sample of tissue which contains less of the mRNA molecules than the normal tissue is identified as cancerous.
Another embodiment of the invention provides a therapeutic composition useful for reducing the growth rate of cancer cells. The composition is comprised of a polynucleotide comprising all or a portion of a nucleotide sequence which is operably linked to a promoter sequence and a pharmaceutically acceptable carrier. The polynucleotide comprising all or a portion of a nucleotide sequence comprises at least 18 contiguous nucleotides. The nucleotide sequence is shown in SEQ ID NO:12.
Yet another embodiment of the invention provides a therapeutic composition useful for reducing the growth rate of cancer cells. The composition is comprised of a polypeptide comprising all or a portion of an amino acid sequence expressed from a polynucleotide sequence and a pharmaceutically acceptable carrier. The polynucleotide sequence is shown in SEQ ID NO:12.
Another embodiment of the invention provides a method of diagnosing dysplasia and cancer. The amount of a polypeptide expressed from a polynucleotide having at least one of a sequence selected from the group consisting of the polynucleotide sequences shown in SEQ ID NOS:2, 5, and 15 in a test sample of tissue suspected of being dysplastic or cancerous is determined. The amount of the polypeptide is also determined in a human tissue which is normal. The determined amounts are compared. A test sample of human tissue which contains more of at least one polypeptide than the normal tissue is identified as being dysplastic or cancerous.
A further embodiment of the invention provides another method of diagnosing dysplasia. The amount of a polypeptide expressed from a polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences shown in SEQ ID NOS:1, 3-4, 6-11, and 13-14 is determined in a test sample of tissue suspected of being dysplastic. The amount of said polypeptide is also determined in a human tissue which is normal. The two amounts are then compared. A test sample of human tissue which contains more of said polypeptide than the normal tissue is identified as being dysplastic.
Another embodiment of the invention provides an additional method of diagnosing cancer.
The amount of a polypeptide expressed from a polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences shown in SEQ ID NOS:2, 5, and 15, is determined in a test sample of tissue suspected of containing cancer, and in a human tissue which is normal. The amount of a polypeptide expressed from a polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences shown in SEQ ID NOS:1, 3-4, 6-11, and 13-14 is also determined in the test sample, and in the normal tissue. The determined amounts of said polypeptides are then compared. A test sample of tissue which contains more of the polypeptide expressed from a polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences shown in SEQ ID NOS:2, 5, and 15, as compared to the normal tissue, and which contains substantially the same amount of a polypeptide expressed from a polynucleotide selected from the group as shown in SEQ ID NOS:1, 3-4, 6-11, and 13-14, as compared to the normal tissue, is identified as cancerous.
Even another embodiment of the invention provides a method of diagnosing dysplasia and cancer. The amount of specific mRNA molecules is determined in a test sample of tissue suspected of being dysplastic or cancerous and in a human tissue which is normal. The mRNA molecules measured are complementary to the minus strand of a double-stranded polynuc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pancreatic cancer genes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pancreatic cancer genes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pancreatic cancer genes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560168

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.