Radiant energy – Ionic separation or analysis – Ion beam pulsing means with detector synchronizing means
Reexamination Certificate
2007-05-15
2007-05-15
Pham, Hai (Department: 2853)
Radiant energy
Ionic separation or analysis
Ion beam pulsing means with detector synchronizing means
C250S285000, C250S286000, C250S288000
Reexamination Certificate
active
10824674
ABSTRACT:
Method and apparatus for identification of chemical compounds in a sample based on differences in ion mobility, wherein the filter and detector electrodes are formed radially spaced on facing substrates.
REFERENCES:
patent: 2615135 (1952-10-01), Glenn, Jr.
patent: 2818507 (1957-12-01), Britten
patent: 2919348 (1959-12-01), Bierman
patent: 3511986 (1970-05-01), Llewellyn
patent: 3621240 (1971-11-01), Cohen et al.
patent: 3931589 (1976-01-01), Aisenberg et al.
patent: 4019989 (1977-04-01), Hazewindus et al.
patent: 4025818 (1977-05-01), Giguere et al.
patent: 4136280 (1979-01-01), Hunt et al.
patent: 4201921 (1980-05-01), McCorkle
patent: 4315153 (1982-02-01), Vahrenkamp
patent: 4517462 (1985-05-01), Boyer et al.
patent: 4761545 (1988-08-01), Marshall et al.
patent: 4931640 (1990-06-01), Marshall et al.
patent: 5019706 (1991-05-01), Allenmann et al.
patent: 5298745 (1994-03-01), Kernan et al.
patent: 5420424 (1995-05-01), Carnahan et al.
patent: 5455417 (1995-10-01), Sacristan
patent: 5479815 (1996-01-01), White et al.
patent: 5508204 (1996-04-01), Norman
patent: 5536939 (1996-07-01), Freidhoff et al.
patent: 5559327 (1996-09-01), Steiner
patent: 5654544 (1997-08-01), Dresch
patent: 5723861 (1998-03-01), Carnahan et al.
patent: 5736739 (1998-04-01), Uber et al.
patent: 5763876 (1998-06-01), Pertinarides et al.
patent: 5789745 (1998-08-01), Martin et al.
patent: 5789747 (1998-08-01), Kato et al.
patent: 5801297 (1998-09-01), Mifsud et al.
patent: 5801379 (1998-09-01), Kouznetsov
patent: 5834771 (1998-11-01), Yoon et al.
patent: 5838003 (1998-11-01), Bertsch et al.
patent: 5965882 (1999-10-01), Megerle et al.
patent: 6051832 (2000-04-01), Bradshaw
patent: 6066848 (2000-05-01), Kassel et al.
patent: 6107624 (2000-08-01), Doring et al.
patent: 6124592 (2000-09-01), Spangler
patent: 6180414 (2001-01-01), Katzman
patent: 6323482 (2001-11-01), Clemmer et al.
patent: 6495823 (2002-12-01), Miller et al.
patent: 6504149 (2003-01-01), Guevremont et al.
patent: 6512224 (2003-01-01), Miller et al.
patent: 6540691 (2003-04-01), Philips
patent: 6618712 (2003-09-01), Parker et al.
patent: 6621077 (2003-09-01), Guevremont et al.
patent: 6639212 (2003-10-01), Guevremont
patent: 6653627 (2003-11-01), Guevremont
patent: 6680203 (2004-01-01), Dasseaux et al.
patent: 6690004 (2004-02-01), Miller et al.
patent: 6703609 (2004-03-01), Guevremont
patent: 6713758 (2004-03-01), Guevremont
patent: 6727496 (2004-04-01), Miller et al.
patent: 6753522 (2004-06-01), Guevremont
patent: 6770875 (2004-08-01), Guevremont
patent: 6774360 (2004-08-01), Guevremont
patent: 6787765 (2004-09-01), Guevremont
patent: 6799355 (2004-10-01), Guevremont
patent: 6806466 (2004-10-01), Guevremont
patent: 2001/0030285 (2001-10-01), Miller et al.
patent: 2002/0070338 (2002-06-01), Loboda
patent: 2002/0134932 (2002-09-01), Guevremont et al.
patent: 2003/0020012 (2003-01-01), Guevremont et al.
patent: 2003/0038235 (2003-02-01), Guevremont et al.
patent: 2003/0052263 (2003-03-01), Kaufman et al.
patent: 2003/0089847 (2003-05-01), Guevremont et al.
patent: 2003/0132380 (2003-07-01), Miller et al.
patent: 2004/0094704 (2004-05-01), Miller et al.
patent: 1405489 (1998-06-01), None
patent: 1412447 (1998-06-01), None
patent: 1485808 (1998-10-01), None
patent: 966583 (1982-10-01), None
patent: 1337934 (1987-09-01), None
patent: 1627984 (1988-07-01), None
patent: WO 00/08454 (2000-02-01), None
patent: WO 00/08455 (2000-02-01), None
patent: WO 00/08456 (2000-02-01), None
patent: WO 00/08457 (2000-02-01), None
patent: WO 01/08197 (2001-02-01), None
patent: WO 01/22049 (2001-03-01), None
patent: WO 01/35441 (2001-05-01), None
patent: WO 01/69217 (2001-09-01), None
patent: WO 01/69220 (2001-09-01), None
patent: WO 01/69647 (2001-09-01), None
patent: WO 02/071053 (2002-09-01), None
patent: WO 02/083276 (2002-10-01), None
patent: WO 03/005016 (2003-01-01), None
patent: WO 03/015120 (2003-02-01), None
“A Micromachined Field Driven Radio Frequency-Ion Mobility Spectrometer for Trace Level Chemical Detection,” A Draper Laboratory Proposal Against the “Advanced Cross-Enterprise Technology Development for NASA Missions,” Solicitation, NASA NRA 99-OSS-05.
Barnett, D.A. et al., “Isotope Separation Using High-Field Asymmetric Waveform Ion Mobility Spectrometry,” Nuclear Instruments & Methods in Physics Research (2000), pp. 179-185, 450(1).
Basile, F., “A Gas Sample Pre-concentration Device Based on Solid Phase Microextraction (SPME) and Temperature Programmed Desorption (TPD),” Instrumentation Sci. Tech., (2003), pp. 155-164, 31(2).
Carnahan, B. et al., “Field Ion Spectrometry—A New Technology for Cocaine and Heroin Detection,” SPIE, (1997), pp. 106-119, 2937.
Demirev, P.A., et al., Microorganism Identification by Mass Spectrometry and Protein Database Searches, (1999), pp. 2732-2738, 74(14).
Demirev, P.A., et al., “Tandem Mass Spectrometry of Intact Proteins for Characterization of Biomarkers fromBacillus cereusT spores,” Analytical Chem., (2001), pp. 5725-5731, 73(23).
Eiceman, G.A., et al., “Miniature radio-frequency mobility analyzer as a gas chromatographic detector for oxygen-containing volatile organic compounds, pheromones, and other insect attractants,” J. Chromatography, (2001), pp. 205-217, 917.
Elhany, E., et al., “Detection of SpecificBacillus anthracisSpore Biomarkers by Matrix-Assisted Laser Desorption / Ionization Time-Of-Flight Mass Spectrometry,” Rapid Commun. Mass. Spectrom., (2001), pp. 2110-2116, 15(22).
Fox, A., et al., “Determination of Carbohydrate Profiles ofBacillus anthracisandBacillus cereusIncluding Identification of O-Methyl Methylpentoses Using Gas Chromatography-Mass Spectrometry,” J. Clin. Microbiol. (1993) pp. 887-894, 31(4).
Guevremont, R. et al., “Atmospheric Pressure In Focusing in a High-Field Asymmetric Waveform Ion Mobility Spectrometer,” Review of Scientific Instruments, (1999), pp. 1370-1383, 70(2).
Guevremont, R. et al., “Calculation of Ion Mobilities From Electrospray Ionization High Field Asymmetric Waveform Ion Mobility Spectrometry Mass Spectrometry,” Journal of Chemical Physics, (2001), pp. 10270-10277, 114(23).
Hathout, Y., et al., “Identification ofBacillusSpores by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry,” Appl. Environ Microbiol. (1999), pp. 4313-4319, 65(10).
Javahery, G. et al., “A Segmented Radiofrequency-Only Quadrupole Collision Cell for Measurements of Ion Collision Cross Section on a Triple Quadrupole,” Mass Spectrometer, J. Am. Soc. Mass. Spectom., (1997), pp. 697-702, 8.
Krishnamurthy, T., et al., “Liquid Chromatography/Microspray Mass Spectrometry for Bacterial Investigations,” (1999), pp. 39-49, 13.
Krylov, E.V., “A Method of Reducing Diffusion Losses in a Drift Spectrometer,” Technical Physics, (1999), pp. 113-116, 4d(1).
Krylov, E.V., “Pulses of Special Shapes Formed on a Capacitive Load,” Instruments and Experimental Techniques, (1997), pp. 628, 40(5).
Miller, R.A. et al., “A MEMS Radio-Frequency Ion Mobility Spectrometer for Chemical Agent Detection,” (Jun. 2000) Proceedings of the 2000 Solid State Sensors and Actuators Workshop, Hilton Head, SC.
Miller, R.A. et al., “A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection,” Sensors and Actuators, (2001), pp. 301-312, A91.
Miller, R.A. et al., “A Novel Micromachined High-Field Asymmetric Waveform-Ion Mobility Spectrometer,” Sensors and Actuators B, (2000) pp. 300-306, B67 (3).
Mowry, C., et al., “Rapid Detection of Bacteria with Miniaturized Pyrolysis-Gas Chromatographic Analysis,” Proc. Of SPIE, (2001), pp. 83-90, 475.
Phillips, M., “Breath tests in medicine,” Scientific American, (1992), pp. 74-79, 267(1).
Phillips, M., “Method for the Collection and Assay of Volatile Organic Compounds in Breath,” Analytical Biochemistry, (1997), pp. 272-278, 247.
Pilzecker, P. et al., “On
Miller Raanan A.
Terrell Mark C.
Fish & Neave IP Group Ropes & Gray LLP
Nguyen Lam S.
Pham Hai
Sionex Corporation
LandOfFree
Pancake spectrometer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pancake spectrometer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pancake spectrometer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3823615