Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel
Reexamination Certificate
1998-12-17
2001-06-12
Chow, Dennis-Doon (Department: 2675)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Touch panel
C345S179000
Reexamination Certificate
active
06246395
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of graphical user interface (GUI) systems employing touchscreens. More specifically, this invention relates to methods and apparatus for interpreting touchscreen inputs.
BACKGROUND OF THE INVENTION
Touchscreen computer interfaces are today present in virtually every place, public and private. Found in such diverse devices as hand-held computers and informational kiosks, touchscreens help everyone from scientists to tourists to input and extract electronically stored information. Touchscreens allow a computer user's finger or stylus to act as an input device, making them extremely useful in applications where a mouse or keyboard would be either impractical or impossible.
Just as the general public intuitively grasps the operation of touchscreens from a user's standpoint, those of skill in the art will similarly recognize the basic operational technology underlying touchscreen interfaces, and how touchscreen device drivers communicate with operating systems. Known touchscreens use various physical or electrical attributes of the screen to sense inputs. Among these are resistance, capacitance, temperature, pressure, vibration, and motion. Programs to implement a graphical user interface (GUI) and operating system are provided in the central processing unit of the computer device with which the touchscreen is associated. These programs typically include a device driver that allows the user to perform such functions as selecting and opening files, moving icons, and inputting commands and other data through the display screen of the computer itself. The allowed inputs are usually similar to those that can be accomplished with a mouse or other standard input device.
Although touchscreen inputs and standard input device inputs are similar in some respects, there are significant practical differences. For example, in systems using a conventional input device such a mouse, there is typically only one port or conduit through which the kind of input expected may be received. For example, since there is usually only one mouse associated with a PC, all point-and-click input comes from the mouse. There is little to no chance of confusing mouse input with input from other sources.
Unfortunately, such confusion is almost ubiquitous in most touchscreen applications. Known touchscreen devices have no way of discriminating in time and space between palm and finger, or stylus and thumb, as they touch the screen in combination. This is due to the fact that, in typical touchscreen applications, it is impossible to effectively distinguish between multiple, simultaneous activation points on the touchscreen. Thus it often occurs, especially in large-format touchscreens, that unintended inputs result from, for example, a palm resting on the touchscreen surface in conjunction with a stylus applied to the touchscreen.
There have been attempts in the art to distinguish, in limited ways, between various types of screen touches. One such an attempt may be seen in U.S. Pat. No. 5,764,222 to Shieh, which describes a “method, apparatus, and article of manufacture” creating a “virtual pointing device” on a touchscreen. This patent suggests using the touchscreen to measure various dimensions of a user's hand, then recording these measurements. The computer can then be programmed to assign a function to a touch from each of the respective hand portions of a measured user. The computer keeps a database of each user's unique measurements, as well as a “default” file representing a “generic” set of measurements.
Although this patent suggests a way to distinguish between and among some types of screen touches, it does not address the problem of classifying or characterizing these inputs when they are made substantially simultaneously. Nor is the described system practical for applications used by a wide cross-section of individuals in public places, such a kiosks or ATM's. More importantly, there is no provision made for those instances in which two fingertips, or a stylus and a knuckle, of the user hit the screen at about the same time. Thus, the computer may respond in a way that the user did not intend, or fail to respond at all.
It is apparent from the foregoing that the need exists for a simple and efficient touchscreen operational arrangement that will facilitate touchscreen use by effectively distinguishing between multiple, simultaneous activation points on the touchscreen.
SUMMARY OF THE INVENTION
In order to accomplish the present invention, there is provided a method for categorizing substantially simultaneous inputs to a touchscreen. The method may be practiced in the context of a computer device having a display screen adapted to receive touchscreen input. In a first step, the display screen is divided into a plurality of sectors. Next, the sectors are sequentially scanned for input. When a plurality of substantially simultaneous inputs are sensed in respective sectors, the location by sector of each input is ascertained. A unique value is then assigned to each input received, the assigned values corresponding to the sequence in time of the respective inputs based upon the sequentially scanned sectors in which the inputs occurred.
The computer device can include a touchscreen driver/sensor adapted and constructed to sequentially drive and sense discrete sectors of the display screen. The driver/sensor can be used to divide the screen into a plurality of sectors.
The driver/sensor can be used to divide the screen into sectors of any desirable number, size, or shape. For example, the sectors can be of substantially equal area, substantially rectilinear sectors, quadrants, sectors having substantially unequal area, or into substantially non-rectilinear sectors.
A sequence counter can be used to assign a time value to each input, and to actuate the driver/sensor to sequentially scan discrete sectors of the display screen at predetermined regular intervals.
Also provided is an apparatus for categorizing substantially simultaneous inputs to a touchscreen. The apparatus includes a display screen adapted to receive touchscreen input. A touchscreen driver/sensor is provided to divide the display screen into a plurality of sectors and to sense input in each of the sectors. A sequence counter is used to actuate the driver/sensor to scan the display screen sectors sequentially and at predetermined intervals for input, and to assign a unique value to each input received.
As with the previous embodiment, the driver/sensor can be used to divide the screen into sectors of any desirable number, size, or shape.
The apparatus can also include a processor adapted and constructed to receive input sector location data from the driver/sensor and input time sequence data from the sequence counter, and to manipulate the location and time sequence data for the inputs to classify the inputs. The driver/sensor can be provided as a multi-channel driver sensor, with the number of channels corresponding to the number of sectors into which the display screen is divided. A multi-channel analog demultiplexer can be connected to the driver/sensor. An analog-to-digital converter can be connected to the demultiplexer. The sequence counter is then connected to the driver/sensor and the demultiplexer such that the sequence counter controls actuation of the driver/sensor and the demultiplexer.
REFERENCES:
patent: 4914624 (1990-04-01), Dunthorn
patent: 5589856 (1996-12-01), Stein et al.
patent: 5748185 (1998-05-01), Stephan et al.
patent: 5764222 (1998-06-01), Shieh
patent: 5825352 (1998-10-01), Bisset et al.
patent: 5943043 (1999-08-01), Furuhata et al.
Goyins Gregg S.
Resman Mark F.
Chow Dennis-Doon
Hewlett--Packard Company
LandOfFree
Palm pressure rejection method and apparatus for touchscreens does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Palm pressure rejection method and apparatus for touchscreens, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Palm pressure rejection method and apparatus for touchscreens will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2532864