Chemistry of hydrocarbon compounds – Alicyclic compound synthesis – From nonhydrocarbon
Patent
1993-04-20
1994-03-08
Pal, Asok
Chemistry of hydrocarbon compounds
Alicyclic compound synthesis
From nonhydrocarbon
585360, 585366, 570187, 570214, C07C 1336, C07C 1338, C07C40300
Patent
active
052929779
ABSTRACT:
An alkylative cycloaddition method is provided that is particularly useful for the synthesis of many of the Vitamin D analogues with differing side chains. Thus, a preferred synthesis is of Vitamin D analogues having a side chain R.sub.1 where a substantially geometrically pure first precursor having the structure ##STR1## and a second precursor are provided, the second precursor being a 1,7 enyne. These precursors are reacted in the presence of a palladium catalyst to form compounds having the structure ##STR2## where R.sub.2 hydrogen, hydroxyl, lower alkoxy, fluorine, or a protecting group, and R.sub.3 is hydrogen, hydroxyl, lower alkoxy, fluorine, or a protecting group.
REFERENCES:
Huebel et al., "In-vivo Effect of 1,25-dihydroxy Vitamin D.sub.3 on Phagocyte Function in Hemodialysis Patients," Kidney International, 40 (5), (1991), pp. 927-993.
Arnold et al., "Induction of Epidermal Ornithine Decarboxylase Following Tape Stripping is Inhibited by a Topical Vitamin D.sub.3 Analogue MC-903," British Journal of Dermatology, 125 (1), (1991), pp. 6-8.
Binderup et al., "20-Epi-Vitamin D.sub.3 Analogues: A Novel Class of Potent Regulators of Cell Growth and Immune Responses," Biochemical Pharmacology, 42 (8), (1991) pp. 1569-1575.
Barton et al., in their 1973 description of the synthesis of 1.alpha.-hydroxy-Vitamin D.sub.3, Journal of the American Chemical Society, 95 (8), (Apr. 18, 1973) pp. 2748-2749.
Posner et al., "Asymmetric Total Synthesis of an A-Ring Precursor to Hormonally Active 1.alpha.,25-Dihydroxyvitamin D.sub.3 ", The Journal of Organic Chemistry, 55 (13), (Jun. 22, 1990), pp. 3967-3969.
Chodynski et al., "Synthesis of Side-Chain Homologated Analogs of 1,25-Dihydroxycholecalciferol and 1,25-Dihydroxyergocalciferol," Steroids, 56, (Jun. 1991), pp. 311-314.
Gill et al., "The Synthesis and Biological Activity of 22-Fluorovitamin D.sub.3 : A New Vitamin D Analog," Steroids, 48 (1-2), (Jul.-Aug. 1986), pp. 93-108.
Gill et al., "Synthesis and Biological Activity of Novel Vitamin D Analogues", Journal of Medical Chemistry, 33 (1990), pp. 480-490.
Onisks et al., "25-Azavitamin D.sub.3, an Inhibitor of Vitamin D Metabolism and Action", Journal of Biological Chemistry, 254:9 (May 10, 1979), pp. 3493-3496.
Tanaka et al., "25-Hydroxy-26,26,26,27,27,27-Hexafluorovitamin D.sub.3 : Biological Activity in the Rat", Arch of Biochem & Biophys, 218 (1), (Oct. 1, 1982), pp. 134-141.
Corradino et al., "Induction of Calcium-Binding Protein in Organ-Cultured Chick Intestine by Fluoro Analogs of Vitamin D.sub.3 ", Arch of Biochem & Biophys, 208 (1), (Apr. 15, 1981), pp. 273-277.
Esvelt et al., "Calcitroic Acid: Biological Activity and Tissue Distribution Studies", Arch. of Biochem & Biophys, 206 (2), (Feb. 1981), pp. 403-413.
Holick et al., "Relationship of 25-Hydroxyvitamine D.sub.3 Side Chain Structure to Biological Activity," J. of Biol. Chem., 250 (1), (Jan. 10, 1975), pp. 226-230.
Ostrem et al., "The Vitamin D-Induced Differentiation of HL-60 Cells: Structural Requirements", Steroids, 49 (1/3), (Jan.-Mar. 1987), pp. 73-102.
Dumas Jacques
Trost Barry M.
Board of Trustees of Leland Stanford Junior University
Pal Asok
LandOfFree
Palladium catalyzed alkylative cyclization useful in synthesis o does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Palladium catalyzed alkylative cyclization useful in synthesis o, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Palladium catalyzed alkylative cyclization useful in synthesis o will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-155351