Page response on existing radio signaling channel

Multiplex communications – Communication over free space – Having a plurality of contiguous regions served by...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S341000, C370S437000, C370S465000, C455S450000

Reexamination Certificate

active

06285667

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to telecommunications and more particularly to communication protocols in a mobile radio network.
BACKGROUND OF THE INVENTION
Mobile radio networks are wide-spread today and provide a mobile radio user with a large variety of communication options, including voice communications, data communications, short message service communications, voice paging communications, etc. As mobile radios become increasingly prolific in society, the strain on mobile radio communication network to accommodate the volume of mobile radio communications increases. For this reason, efficiencies are always desired in the mobile radio communications environment to simplify and improve call connection procedures and call connection protocols between telephone networks and mobile radios accessing them.
Typically, when a call request is made from a core telephone network to a mobile radio, the core network sends a page request through a radio access network to the mobile station. This page request is sent via a common paging channel monitored by all of the mobile stations assigned to the radio access network. The page request includes a unique identifier associated exclusively with the mobile radio to which the call is destined. The mobile radio (which, as stated previously, is monitoring the page channel) receives the page request and identifies the unique mobile radio identifier associated with the page request as its own. The mobile station then initiates a connection between itself and the caller. The call connection is performed by the radio access network by assigning a channel for use between the mobile station and the core network through which the mobile station and the call originator can communicate.
One of ordinary skill in the art will understand that radio access networks consist of a variety of basic building blocks such as base stations, base station controllers, mobile service switching centers, etc., which permit the mobile stations to communicate with a number of core networks as public telephone switched networks, etc. In this regard, throughout this specification, the phrase “generic radio access network” will refer to the building blocks requested to perform the call connection procedures between a mobile terminal and a core network.
As the volume of traffic in the mobile radio environment increases, it becomes increasingly likely that mobile stations receive simultaneous requests for call connections (or receive a request for a call connection while engaged in an active call). In such situations, the mobile station usually acknowledges to the second requester that it is busy with another call on another channel and therefore cannot accept the second call. It is possible, however, with current technology, for the mobile stations to accept two calls simultaneously, provided the generic radio access network can employ an efficient procedure to connect them. Thus, for example, a mobile station can engage in an active voice telephone call with one core network and still receive on another channel a short message service message from another core network, which can be displayed to the user when the voice telephone call is completed. Unfortunately, however, the present systems usually require the mobile station to employ multiple channels to receive multiple simultaneous messages.
SUMMARY OF THE INVENTION
In the present invention, a mobile station can receive simultaneous messages from two different core networks while employing only a single channel between the generic radio access network and the mobile station. Because the number of channels available to the generic radio access network to be employed simultaneously is limited, the consolidation of multiple simultaneous calls into a single channel reserves capacity in the generic radio access network for other mobile station call connections. In the preferred embodiment of the present invention, the simultaneous call connection is accomplished using a unique page procedure between the core networks, generic radio access network, and mobile station to which the simultaneous calls are destined.
First, a call is established between the mobile station and a first core network through the generic radio access network. Then, another core network pages the mobile station to initiate a second call connection. The page passes from the second core network through the generic radio access network to the mobile station via the dedicated page channel monitored continuously by the mobile station. The mobile station then returns the page response to the second core network using the existing signaling channel between the generic radio access network and the mobile station associated with the established user data channel. This is contrary to traditional thinking which would not provide the page response from the mobile station to the radio access network via the same channel in active use by the mobile station for the previously established call. In the present invention, the mobile station provides the page response to the second core network via the same channel being used for the established call (up to the generic radio access network) and via a newly established multiplexed channel (from the radio access network to the second core network). Thus, the page response triggers a multiplexing in the radio access network of two user connections: one from the radio access network to the first core network and a second from the radio access network to the second core network. The multiplexed connections are then fed from the mobile station to the radio access network via a single channel, preferably the previously established channel used by the first core network to communicate from the radio access network to the mobile station.
In alternative embodiments, the same procedure is used when a call is established with a first core network and a second call comes through the same core network. In such a case, the core network can multiplex the calls without coordinating with existing connections.
In some embodiments, the existing channel is reused. However, in other embodiments, the page message is kept uncoordinated (sent in parallel on the page channel). Thus, avoiding the need to coordinate the page message with a possibly existing radio channel significantly reduces the complexity of the generic radio access network, e.g. in the case where a page request from the core network is sent to another node within the generic radio access network other than the one currently handling the connection to the mobile terminal. In this case, the added complexity in the mobile terminal to monitor a page channel in parallel to communication on a dedicated radio channel is minor compared to requiring the mobile terminal to receive and especially transmit two radio channels independently.


REFERENCES:
patent: 5533029 (1996-07-01), Gardner
patent: 5535215 (1996-07-01), Hieatt, III
patent: 5745695 (1998-04-01), Gilchrist et al.
patent: 6144647 (2000-11-01), Lopez-Torres
patent: 6163699 (2000-12-01), Naor et al.
patent: 750 439 A1 (1996-12-01), None
Sami Tabbane, “Location Management Methods For Third-Generation Mobile Systems,” IEEE Communications Magazine, Aug. 1997, pp. 72-78 & 83-84.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Page response on existing radio signaling channel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Page response on existing radio signaling channel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Page response on existing radio signaling channel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2441465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.