Pad quick release device for chemical mechanical planarization

Abrading – Tool support for flexible-member tool

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S041000, C451S285000, C451S287000

Reexamination Certificate

active

06464574

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the manufacture of objects. More particularly, the invention provides a technique including a device for planarizing a film of material of an article such as a semiconductor wafer. However, it will be recognized that the invention has a wider range of applicability; it can also be applied to flat panel displays, hard disks, raw wafers, and other objects that require a high degree of planarity.
The fabrication of integrated circuit devices often begins by producing semiconductor wafers cut from an ingot of single crystal silicon which is formed by pulling a seed from a silicon melt rotating in a crucible. The ingot is then sliced into individual wafers using a diamond cutting blade. Following the cutting operation, at least one surface (process surface) of the wafer is polished to a relatively flat, scratch-free surface. The polished surface area of the wafer is first subdivided into a plurality of die locations at which integrated circuits (IC) are subsequently formed. A series of wafer masking and processing steps are used to fabricate each IC. Thereafter, the individual dice are cut or scribed from the wafer and individually packaged and tested to complete the device manufacture process.
During IC manufacturing, the various masking and processing steps typically result in the formation of topographical irregularities on the wafer surface. For example, topographical surface irregularities are created after metallization, which includes a sequence of blanketing the wafer surface with a conductive metal layer and then etching away unwanted portions of the blanket metal layer to form a metallization interconnect pattern on each IC. This problem is exacerbated by the use of multilevel interconnects.
A common surface irregularity in a semiconductor wafer is known as a step. A step is the resulting height differential between the metal interconnect and the wafer surface where the metal has been removed. A typical VLSI chip on which a first metallization layer has been defined may contain several million steps, and the whole wafer may contain several hundred ICs.
Consequently, maintaining wafer surface planarity during fabrication is important. Photolithographic processes are typically pushed close to the limit of resolution in order to create maximum circuit density. Typical device geometries call for line widths on the order of 0.5 &mgr;M. Since these geometries are photolithographically produced, it is important that the wafer surface be highly planar in order to accurately focus the illumination radiation at a single plane of focus to achieve precise imaging over the entire surface of the wafer. A wafer surface that is not sufficiently planar, will result in structures that are poorly defined, with the circuits either being nonfunctional or, at best, exhibiting less than optimum performance. To alleviate these problems, the wafer is “planarized” at various points in the process to minimize non-planar topography and its adverse effects. As additional levels are added to multilevel-interconnection schemes and circuit features are scaled to submicron dimensions, the required degree of planarization increases. As circuit dimensions are reduced, interconnect levels must be globally planarized to produce a reliable, high density device. Planarization can be implemented in either the conductor or the dielectric layers.
In order to achieve the degree of planarity required to produce high density integrated circuits, chemical-mechanical planarization processes (“CMP”) are being employed with increasing frequency. A conventional rotational CMP apparatus includes a wafer carrier for holding a semiconductor wafer. A soft, resilient pad is typically placed between the wafer carrier and the wafer, and the wafer is generally held against the resilient pad by a partial vacuum. The wafer carrier is designed to be continuously rotated by a drive motor. In addition, the wafer carrier typically is also designed for transverse movement. The rotational and transverse movement is intended to reduce variability in material removal rates over the surface of the wafer. The apparatus further includes a rotating platen on which is mounted a polishing pad. The platen is relatively large in comparison to the wafer, so that during the CMP process, the wafer may be moved across the surface of the polishing pad by the wafer carrier. A polishing slurry containing chemically-reactive solution, in which are suspended abrasive particles, is deposited through a supply tube onto the surface of the polishing pad.
CMP is advantageous because it can be performed in one step, in contrast to prior planarization techniques which tend to be more complex, involving multiple steps. For example, planarization of CVD interlevel dielectric films can be achieved by a sacrificial layer etchback technique. This involves coating the CVD dielectric with a film which is then rapidly etched back (sacrificed) to expose the topmost portions of the underlying dielectric. The etch chemistry is then changed to provide removal of the sacrificial layer and dielectric at the same rate. This continues until all of the sacrificial layer has been etched away, resulting in a planarized dielectric layer.
Many other limitations, however, exist with CMP. Specifically, CMP often involves a large polishing pad, which uses a large quantity of slurry material. The large polishing pad is often difficult to control and requires expensive and difficult to control slurries. Additionally, the large polishing pad is often difficult to remove and replace. The large pad is also expensive and consumes a large foot print in the fabrication facility. These and other limitations still exist with CMP and the like.
What is needed is an improvement of the CMP technique to improve the degree of global uniformity that can be achieved using CMP.
SUMMARY OF THE INVENTION
In accordance with specific embodiments of the present invention, a chemical-mechanical planarization apparatus comprises a stage assembly for holding an object for chemical-mechanical planarization a pad spindle, a mechanical drive coupled to the spindle to provide rotational movement of the pad spindle about a center axis, and a pad chuck coupled to the other end of the spindle for selective attachment and detachment of a polishing pad. The pad chuck includes a receiving head having a cavity for receiving a polishing pad. The pad chuck further includes a plurality of links, each pivotally coupled to the receiving head so that a first portion of each link extends beyond the outer periphery of the receiving head. A second portion of each link comes into contact with a polishing pad received in the cavity to effectuate a cooperative clamping action to retain the polishing pad within the receiving head and thus attach the polishing pad to the pad chuck. A detachment station having portions which contact the first portions provides a releasing mechanism to detach the polishing pad. In a particular embodiment, the detachment station is an annulus.
A CMP system according to an aspect of the invention comprises a support stage for supporting a substrate to be polished, a polishing assembly having a drive mechanism for providing rotational about a first axis, a pad spindle coupled at a first end to the drive mechanism, and a pad chuck coupled at a second end of the pad spindle, a pad dispenser for providing a plurality of polishing pads; and a pad receptacle for receiving polishing pads from the pad chuck. The pad assembly is operable wherein the pad chuck is aligned with the pad dispenser in a manner to retrieve a polishing pad from the pad dispenser. The pad assembly is further operable wherein the pad chuck is aligned with the receptacle in a manner to release the polishing pad to the pad receptacle.


REFERENCES:
patent: 3522681 (1970-08-01), Lampert
patent: 3864884 (1975-02-01), Weissman
patent: 4138804 (1979-02-01), Thielen
patent: 5664987 (1997-09-01), Renteln
patent: 5792709 (1998-08-01), Robinson et al.
patent: 5938504 (1999-08-01), Talieh
pat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pad quick release device for chemical mechanical planarization does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pad quick release device for chemical mechanical planarization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pad quick release device for chemical mechanical planarization will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2974152

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.