Packet processing relay agent to provide link layer...

Electrical computers and digital processing systems: multicomput – Computer-to-computer data routing – Alternate path routing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S236000, C709S219000, C725S109000, C725S110000, C725S111000, C725S120000

Reexamination Certificate

active

06484210

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for allowing a personal computer to receive data from a computer network such as the Internet via a broadcast channel, e.g., of a cable or satellite television network, while transmitting data upstream to the computer network via a telephone line.
The following acronyms are used:
ARP—Address Resolution Protocol;
CPU—Central Processing Unit;
DHCP—Dynamic Host Configuration Protocol;
HTTP—Hyper Text Transport Protocol;
IETF—Internet Engineering Task Force;
IETF—Internet Engineering Task Force;
IGMP—Internet Group Management Protocol;
IP—Internet Protocol;
IPCP—Internet Protocol Configuration Protocol;
ISP—Internet Service Provider;
LAN—Local Area Network;
LMDS—Local Multi-point Distribution System;
MMDS—Multi-channel Multi-point Distribution System;
MSO—Multiple Systems Operator;
PC—Personal Computer;
PPP—Point-to-Point Protocol;
PPRA—Packet Processing Relay Agent;
RF—Radio Frequency;
RFC—Request For Comments;
TCP—Transmission Control Protocol;
UDP—User Datagram Protocol;
UHF—Ultra High Frequency; and
WAN—Wide Area Network.
Existing cable television networks deliver digital television signals to users' homes via coaxial cable, or hybrid fiber and coaxial cable networks. Additionally, satellite distribution networks that transmit programs directly to a user's home have also gained increased popularity. The digital signals transmitted to the user provide high-fidelity video and audio. Other types of data can also be transmitted to the user, such as closed captioning data, stock data, weather reports and the like. This data may be modulated onto an entire television signal channel, or a portion of the television signal channel, such as the vertical blanking interval, and recovered at a decoder in the user's home.
Additionally, some cable networks provide an upstream communication path that allows a user to transmit signals to the headend, for example, to order pay-per-view programming, or to check on an account balance.
Furthermore, computer networks such as the Internet are growing rapidly in popularity, particularly among the general public who use the Internet for entertainment, educational, and informational purposes, and to communicate with other users. A user typically accesses the Internet via a PC and a telephone modem via a conventional duplex telephone line to download graphics, text and even audio and video data from various remote servers. Users may also communicate real-time with one another by transmitting data from a sender's PC to the receiver's PC. Thus, data is transmitted to and from the PC via the two-way telephone modem.
An important difference between telephone and cable or satellite television networks is bandwidth. Because telephone networks were built to carry only voice signals, the bandwidth is very limited, e.g., 3 KHz. In contrast, cable television and satellite networks are designed to deliver full-motion video and, as a result, have a much greater bandwidth, e.g., several hundred MHz or more.
Accordingly, the provision of Internet data services and the like on a cable or satellite network would be highly desirable due to the increased bandwidth available. Such an arrangement would greatly speed the response to the user's PC, while providing additional marketing opportunities for cable and satellite network operators.
However, the provision of an upstream path is not feasible for satellite or terrestrial broadcast networks, including UHF, MMDS and LMDS. Moreover, many cable television networks are not configured for upstream communications, or any such provisioning may be limited and not suitable for handling transmissions from a larger number of users. In particular, network operators may prefer to maintain the available upstream path for significant revenue-enhancing activities such as pay-per-view orders.
Furthermore, since the cable/satellite channel is a broadcast channel, and the telephone line is a point-to-point channel, communication and addressing protocols that are available on a PC do not work seamlessly in the cable/satellite broadcast environment. Moreover, the communication and addressing protocols of a computer network are generally incompatible with cable and satellite television equipment.
Accordingly, it would be desirable to provide a system that allows a PC to receive data from a computer network such as the Internet via a downstream broadcast channel of a cable, satellite or terrestrial broadcast television network, while transmitting data to the computer network via an upstream telephone line. The system should provide compatibility with the routing/addressing conventions of the protocols stack used by the computer network.
In addition, the system should be designed so that packets with a cable modem source address are not rejected by the telephone network. Such rejection would occur if the telephone network provider uses anti-spoofing filters that reject packets with source addresses that are not recognized by the telephone network. Accordingly, the system should be designed to have the telephone network assigned source addresses on packets going through the telephone network.
The system should provide a logical path from a cable modem to a phone modem.
The system should provide a packet processing relay agent that implements functional enhancements including application level proxy, DHCP relay agent, IGMP proxy, IP encapsulation, IP filtering, data-link layer tunneling, data link layer filtering, and proxy ARP agents.
The present invention provides a system having the above and other advantages.
SUMMARY OF THE INVENTION
The present invention relates to a method and apparatus for allowing a personal computer, router/bridge or other device to receive data from a computer network such as the Internet via a broadcast channel of a cable, satellite or other terrestrial broadcast television network, while transmitting data upstream to the computer network via a telephone line. The invention thereby allows a user to quickly access and retrieve data from the computer network via a high bandwidth channel.
A particular method is presented for providing link layer forwarding from a one-way, receive-only adapter, such as a cable, satellite, terrestrial broadcast, or other wired or wireless modem, to the computer network using a two-way adapter, such as a telephone modem. Terrestrial broadcast systems, such as MMDS, employ line-of-sight terrestrial signals such as microwave signals. The one-way adapter receives data from a computer network via a first communication path, such as a cable television link or satellite link, and the two-way adapter receives data from, and sends data to, a service provider of the computer network via a second communication path, such as a telephone link. The service provider may be an ISP that allows a user to access a computer network such as the Internet.
A method for providing link layer forwarding from a one-way adapter to a two-way adapter includes the steps of: monitoring a data packet received at a data link layer driver of the one-way adapter, and determining whether the data packet is received from a higher protocol layer of the one-way adapter. The data packet is provided from the data link layer driver of the one-way adapter to the higher protocol layer if the data packet is not received from the higher protocol layer.
Essentially, if the data packet is not received from the higher protocol layer of the one-way adapter, it is likely received from a lower protocol layer, e.g., the physical layer comprising the one-way adapter. In this case, the data packet may include, for example, Internet data received via the first communication path.
The data packet is forwarded from the data link layer driver of the one-way adapter to a packet processing relay agent if the data packet is received from the higher protocol layer. The packet processing relay agent processes the data packet forwarded to it, then forwards the data packet to a data link layer driver of the two-way adapter. The data link laye

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Packet processing relay agent to provide link layer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Packet processing relay agent to provide link layer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Packet processing relay agent to provide link layer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2993455

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.