Special receptacle or package – Support panel having article pinned or wrapped thereon
Reexamination Certificate
2000-05-23
2004-11-16
Stashick, Anthony D. (Department: 3728)
Special receptacle or package
Support panel having article pinned or wrapped thereon
C206S335000, C206S521000
Reexamination Certificate
active
06817472
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to what is commonly referred to as “protective packaging”, and more specifically to such devices and components utilized in protecting heavy goods which may also have fragile parts to be handled or shipped, and the materials utilized to fabricate such devices and components.
BACKGROUND OF THE INVENTION
A packaging component may be generally defined as a material or plurality of materials that are selected and designed for the purpose of providing specific packaging properties or a range of properties. These materials are used in such a manner so as to construct or fabricate packaging components. Examples of some packaging materials would be paper, corrugated paper, fiber board, polyurethane foam and boards, expanded polystyrene, polyethylene, polypropylene, steel, aluminum, wood, and virtually any other material deemed appropriate for the packaging challenge at hand.
A packaging component may best be described as an engineered device that communicates with the object actually being packaged in such a manner so as to provide for the optimum level of packaging protection achievable. Examples of packaging components would be a plastic bag, a corrugated carton, a wood or paper pallet, a corrugated slip sheet, an aluminum can, an expanded polystyrene corner, a “foam in place” construct made of polyurethane foam, and plastic bubble wrap, just to name a few. Obviously, the aforementioned list is far from being comprehensive. More specifically, for the purposes of this disclosure, the terms “packaging”, “protection”, and “cushioning” shall refer to all of the processes and factors relevant to ensuring the safety of an item or items during the “material handling” process. Additionally, for the purposes of this disclosure, the term “material handling” shall refer to all of the factors relevant to the staging, organization, storing, location, loading, movement, shipping, unloading, wrapping, containment, tracking, protection, and overall “safety and preservation” of goods and materials.
As illustrated above, a multitude of various packaging materials exists today, the variety of which are almost unlimited. Even more staggering is the number of packaging components constructed of these materials. The criteria for determining the selection of materials and the subsequent design of the packaging component are usually performance and economy. Virtually any packaging challenge can be addressed effectively when only performance parameters are considered. When economic factors are taken into account, however, the task can become quite challenging.
A formidable task with respect to the instant invention was to provide a packaging system that could successfully protect from damage the delicate features generally indigenous to all vehicular radiators. While the invention hereafter described is particularly directed to this application of packaging such radiators, it will be understood that the invention has far broader application in other environments and to other articles to be packaged.
Generally stated, all radiators, whether designed for the smallest sub-compact car or the largest diesel off road truck, present numerous packaging challenges. For example, all such radiators have as a main component a tank or plurality of tanks the purpose of which are to contain cooling fluids. These tanks are generally delicate (e.g., thin-walled), often irregularly shaped, and may possess thin and/or sharp surfaces. Additionally, the tanks may typically be made of either plastic, copper-brass, or aluminum. Those radiators that are constructed of copper-brass are particularly difficult to protect and package given their weight, because the stresses placed on the packaging are significantly higher due to higher inertial forces. The packaging of the prior art therefore necessitated the utilization of a different design than that which would be employed for the plastic or aluminum radiator, for instance.
Generally speaking, radiators can be classified into three general categories of construction. For the purposes of this disclosure, they are referred to as follows:
Category “A”: Radiators are constructed of plastic tanks, aluminum frames, and aluminum cores. Radiators in this category are the lightest, and hence easiest to package.
Category “B”: Radiators are constructed of plastic tanks, copper-brass frames, and aluminum cores. Radiators in this category are somewhat more difficult to package than those of category “A” above.
Category “C”: Radiators in this category are constructed of copper-brass tanks, copper-brass frames, and aluminum cores. Radiators in this category are by far more difficult to package than those of categories “A” and “B”. Therefore, the prior art methodology for packaging radiators in this category includes the use of certain packaging materials that one would typically not employ when packaging radiators of categories “A” and “B”. Specifically, the radiators of category “C” are packaged utilizing polyurethane based “foam-in-place” and molded “EPS” (expanded polystyrene). Although both of these materials provide adequate protection and thus good packaging attributes, both of these materials are considered less than ecologically sound.
Other characteristics of radiators are delicate, protruding valves, a filler neck, hose fittings, and other miscellaneous protrusions that facilitate connection with the intended machinery. All radiators have as one of their main components, what is known as a “cross-flow” or “down-flow” section. The respective terms refer to the arrangement of the tank(s) with regard to the final orientation of the radiator. The core section is typically comprised of many, very delicate cooling fins. Due to the fragile nature of the fins, extra attention to the design of the packaging is called for.
There have been numerous prior art attempts to meet the demands of packaging such articles. The would-be solutions and components available, however, are either not entirely satisfactory as performers mechanically, they do not meet the requisite costs constraints, or they simply do not provide an adequate performance to costs benefit.
To further complicate matters, another challenge presented was to provide a package that would, in effect yield a universal packaging design for virtually all radiators, regardless of size and weight. To clearly illustrate the formidable task at hand, one need only consider the scope and diversity of machinery that has as part of its mechanical constitution, at lease one radiator. One company is known to manufacture at least 200 different radiators, for cars and light trucks alone, hence, the range and scope of radiator designs is staggering. Currently, packaging for radiators tends to be highly specific; that is, each different style and specification of radiator has had its packaging designed specifically for it. Stated differently, a package designed for radiator “x” would fit radiator “x”, and possibly some other radiators, but this limited adaptability would be a function of chance, not necessarily intelligent design. Obviously, the sheer quantity of packaging that one company would need to stock in order to have packaging on hand for 200 radiators is colossal. Additionally one must consider the logistical challenge of tracking and handling the huge inventory, and designing a new package as required for each new radiator design.
Another factor that must be considered is the life cycle of the tools required on producing the packaging components. Because of the very limited applicability of the prior art packaging to a range of radiators, a tool designed, for example, to form expanded polystyrene end caps for a given range of radiator designs becomes less universal each year in its applicability, and thus, has less remaining value.
It becomes clear that the currently available packaging and approaches to packaging provide a relatively expensive attempt to resolving the problem of packaging radiators.
Specifically, it is most desirable to provide a packaging solution that is more universal in its ap
Arnold Troy
Baniak Pine & Gannon
Cougar Package Designers, Inc.
Stashick Anthony D.
LandOfFree
Packaging component and containment system particularly... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Packaging component and containment system particularly..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Packaging component and containment system particularly... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3326504