Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices
Reexamination Certificate
1999-02-26
2002-06-11
Budd, Mark O. (Department: 2834)
Electrical generator or motor structure
Non-dynamoelectric
Piezoelectric elements and devices
C310S330000, C310S334000, C310S366000
Reexamination Certificate
active
06404107
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to actuator elements such as may be used for active vibration reduction, structural control, dynamic testing, precision positioning, motion control, stirring, shaking, and passive or active damping. More particularly, the present invention relates to a packaged actuator assembly that is electronically controllable and may be used separately or adapted to actively suppress vibration, actuate structures, or damp mechanical states of a device to which it is attached. As described in a subsequent section below, the assembly may be bonded or attached to a structure or system, thereby integrating it with the system to be actuated, controlled or damped.
Smart materials, such as piezoelectric, electrostrictive or magnetostrictive materials, may be used for high band width tasks such as actuation or damping of structural or acoustic noise, and also for precision positioning applications. Such applications frequently require that the smart material be bonded or attached to the structure that it is to control. However, general purpose actuators of these materials are not generally available, and typically a person wishing to implement such a control task must take raw, possibly non-electroded, smart material stock, together with any necessary electrodes, adhesives and insulating structures and proceed to fasten it onto, or incorporate it into, the article of interest.
For such applications, it becomes necessary to connect and attach these materials in such a way that the mechanical and electrical connections to the smart material are robust and capable of creating strain within the smart member or displacing or forcing the system, and to couple this strain, motion or force to the object which is to be controlled. Often, it is required that the smart material be used in a non-benign environment, greatly increasing the chances of its mechanical or electrical failure.
By way of example, one such application, that of vibration suppression and actuation for a structure, requires attachment of a piezoelectric element (or multiple elements) to the structure. These elements are then actuated, the piezoelectric effect transforming electrical energy applied to the elements into mechanical energy that is distributed throughout the elements. By selectively creating mechanical impulses or changing strain within the piezoelectric material, specific shape control of the underlying structure is achievable. Rapid actuation can be used to suppress a natural vibration or to apply a controlled vibration or displacement. Examples of this application of piezoelectric and other intelligent materials have become increasingly common in recent years.
In a typical vibration suppression and actuation application, a piezoelectric element is bonded to a structure in a complex sequence of steps. The surface of the structure is first machined so that one or more channels are created to carry electrical leads needed to connect to the piezoelectric element. Alternatively, instead of machining channels, two different epoxies may be used to make both the mechanical and the electrical contacts. In this alternative approach, a conductive epoxy is spotted, i.e., applied locally to form conductors, and a structural epoxy is applied to the rest of the structure, bonding the piezoelectric element to the structure. Everything is then covered with a protective coating.
This assembly procedure is labor intensive, and often involves much rework due to problems in working with the epoxy. Mechanical uniformity between different piezoelectric elements is difficult to obtain due to the variability of the process, especially with regard to alignment and bonding of the piezoelectric elements. Electrical and mechanical connections formed in this way are often unreliable. It is common for the conductive epoxy to flow in an undesirable way, causing a short across the ends of the piezoelectric element. Furthermore, piezoelectric elements are very fragile and when unsupported may be broken during bonding or handling.
Another drawback of the conventional fabrication process is that after the piezoelectric element is bonded to the structure, if fracture occurs, that part of the piezoelectric element which is not in contact with the conductor is disabled. Full actuation of the element is thereby degraded. Shielding also can be a problem since other circuit components as well as personnel must generally be shielded from the electrodes of these devices, which may carry a high voltage.
One approach to incorporating piezoelectric elements, such as a thin piezoelectric plate, a cylinder or a stack of discs or annuli, into a controllable structure has been described in U.S. Pat. No. 4,849,668 of Javier de Luis and Edward F. Crawley. This technique involves meticulous hand-assembly of various elements into an integral structure in which the piezoceramic elements are insulated and contained within the structure of a laminated composite body which serves as a strong support. The support reduces problems of electrode cracking, and, at least as set forth in that patent, may be implemented in a way calculated to optimize structural strength with mechanical actuation efficiency. Furthermore, for cylinders or stacked annuli the natural internal passage of these off-the-shelf piezo forms simplifies, to some extent, the otherwise difficult task of installing wiring. Nonetheless, design is not simple, and fabrication remains time-consuming and subject to numerous failure modes during assembly and operation.
The field of dynamic testing requires versatile actuators to shake or perturb structures so that their response can be measured or controlled. Here, however, the accepted methodology for shaking test devices involves using an electromechanical motor to create a linear disturbance. The motor is generally applied via a stinger design, in order to decouple the motor from the desired signal. Such external motors still have the drawback that dynamic coupling is often encountered when using the motor to excite the structure. Furthermore, with this type of actuator, inertia is added to the structure, resulting in undesirable dynamics. The structure can become grounded when the exciter is not an integral part of the structure. These factors can greatly complicate device behavior, as well as the modeling or mathematical analysis of the states of interest. The use of piezoelectric actuators could overcome many of these drawbacks, but, as noted above, would introduce its own problems of complex construction, variation in actuation characteristics, and durability. Similar problems arise when a piezoelectric or electrostrictive element is used for sensing.
Thus, improvements are desirable in the manner in which an element is bonded to the structure to be controlled or actuated, such that the element may have high band width actuation capabilities and be easily set up, yet be mechanically and electrically robust, and not significantly alter the mechanical properties of the structure as a whole. It is also desirable to achieve high strain transfer from the piezoelectric element to the structure of interest.
SUMMARY OF THE INVENTION
An actuator assembly according to the present invention includes one or more strain elements, such as a piezoelectric or electrostrictive plate or shell, a housing forming a protective body about the element, and electrical contacts mounted in the housing and connecting to the strain element, these parts together forming a flexible card. At least one side of the assembly includes a thin sheet which is attached to a major face of the strain element, and by bonding the outside of the sheet to an object a stiff shear-free coupling is obtained between the object and the strain element in the housing.
In a preferred embodiment, the strain elements are piezoceramic plates, which are quite thin, preferably between slightly under an eighth of a millimeter to several millimeters thick, and which have a relatively large surface area, with one or both of their width and length dimensions being tens o
Crawley Edward
Lazarus Kenneth B.
Lundstrom Mark E.
Moore Jeffrey W.
Russo Farla
Active Control eXperts, Inc.
Budd Mark O.
Testa Hurwitz & Thibeault LLP
LandOfFree
Packaged strain actuator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Packaged strain actuator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Packaged strain actuator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2949285