Package-type scroll compressor

Rotary expansible chamber devices – Heat exchange or non-working fluid lubricating or sealing – Non-working fluid passage in inner working or reacting member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C418S055100, C062S095000, C062S093000, C062S081000, C095S122000

Reexamination Certificate

active

06283738

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a package-type compressor of the type used for air compression, refrigeration and air-conditioning, etc., and more particularly to a package-type compressor using an oil-free scroll compressor element. An oil-free scroll compressor, which does not use oil such as a lubricating oil for the flow passage of the operation gas, is a well known compressor for use in air compression, refrigeration, and air-conditioning.
In this oil-free scroll compressor, two sealed spaces are defined by laps and end plates on the outer wall surface of an orbiting scroll lap and a stationary scroll lap by combining the orbiting scroll and the stationary scroll, each of which is equipped with spiral laps perpendicular to an end plate, while the inside of the laps face one another.
The sealed spaces move towards the center portion due to the relative motion of both scrolls. As their volumes thus decrease, a gas sucked from the outer peripheral sides of these scrolls is compressed and is discharged from a discharge port disposed at the center portion of the stationary scroll. When the operation gas is compressed in this way by the relative motion of the orbiting scroll and the stationary scroll, the scroll compressor generates heat. A discharge temperature of the operation gas reaches to about 190 to about 240° C.
To increase a capacity of compressor, the scroll compressor element which is so-called a double scroll compressor, is proposed recently. The double scroll compressor has scroll laps on both sides of the end plate of the orbiting scroll.
It is impossible to use one side of the end plate of the orbiting scroll for cooling in case of the double scroll, as the conventional scroll compressor is possible. Therefore, cooling holes are formed through the end plate of the orbiting scroll of the double scroll.
An example of such a system is described in Japanese Patent Laid-open No. 8-219067/1996 and Japanese Patent Laid-open No. 8-261180/1996.
Though it is considered how to cool the compressor element itself in these publication, it does not take into consideration of cooling the whole compressor when it is packaged. That is, the double scroll compressor element applied to the package-type compressor generates vast heat compared with a conventional scroll compressor elements at the center of the orbiting scroll.
It is, therefore, needed to use a cooling air sucked from outside of a casing of the package-type compressor effectively. To cool the compressor effectively, a flow rate of a blow gas to the compressor has been increased until now. According to this technique, however, the cooling effect has not improved by increasing the blow gas on the double scroll compressor, because an area for cooling is restricted owing to a presence of scroll laps on both side of the orbiting scroll.
A noise caused by a cooling gas flow increases, when the blow gas flow rate has increased to get more effective cooling. Further, a bad influence has increased on a circumstance around the casing of the compressor by a hot air discharged from the package-type compressor after cooling. Therefore, it costs much for soundproofing and discharging exhaust gas after cooling to a place far away.
BRIEF SUMMARY OF THE INVENTION
It is therefore a main object of the present invention to achieve a low noise package-type scroll compressor which can eliminate the problems described above. It is another object of the present invention to achieve a package-type scroll compressor which does not need a large installing space. It is still another object of the present invention to achieve a package-type scroll compressor having a big capacity which improves reliability of the scroll compressor with increasing cooling effect.
A package-type scroll compressor of the type to which invention applies, comprises a scroll compressor element having an orbiting scroll which has scroll laps on both sides of an end plate and two stationary scrolls each of which has a scroll lap meshing the scroll lap of the orbiting scroll and forming a compression chamber with the scroll lap of the orbiting scroll respectively; a motor for driving the scroll compressor element; a cooler for cooling an operation gas compressed in the scroll compressor element; a cooling fan disposed on one end of the motor for blasting cooling air subjected to heat-exchange with the operation gas by the cooler; and a casing for accommodating these members.
A first embodiment of the present invention for accomplishing the objects described above employs a construction wherein the scroll compressor element is disposed above the motor, a dryer for drying the operation gas cooled in the cooler is disposed further above the scroll compressor element, through-holes for cooling are formed in the end plate of the orbiting scroll, cooling passages for cooling the scroll compressor element communicating the through-holes are formed in the scroll compressor element, and the cooling passages are arranged vertically.
Preferably, this cooler is disposed above the cooling fan, or the dryer provides a refrigeration cycle of a heat pump type. A second embodiment of the present invention for accomplishing the objects described above employs a construction wherein the package-type scroll compressor provides a partition wall for partitioning a first flow passage of the cooling air for cooling the scroll compressor element and the motor, and a second flow passage of the cooling air for cooling the cooler.
Preferably, the cooling fan blows cooling air to both the first flow passage and the second flow passage; a suction partition wall is provided at the casing where the cooling fan is disposed, a first opening is formed on the suction partition wall facing to the cooling fan, and a second opening which introduces air from inside of the casing, is formed at the different portion of the suction partition wall where the first opening is formed; a suction port which introduces the cooling air to the first and the second flow passages, is provided at the partition wall opposite to the cooling fan; or the dryer is disposed above the scroll compressor element, the suction port is formed at the casing facing to the dryer, the discharge port is formed at a top of the casing, and a third flow passage is formed in the compressor to suck a peripheral air from the suction port and to discharge the sucked air from the discharge port.
More preferably, the discharge port is formed at the top of the partition wall to discharge the cooling air passed through the first and the second flow passage outside of the compressor.
Further, a rotor shaft of the motor and a driving shaft of the scroll compressor element may be in parallel; a plurality of fins may be formed on the both side of the scroll compressor element and the fins may be substantially in parallel with the through-holes formed inside of the end plate of the orbiting scroll; or a suction space may be juxtaposed to an axial end of the cooling fan.
A third embodiment of the present invention for accomplishing the objects described above employs a construction wherein a partitioning means which separates the first flow passage for cooling the scroll compressor element and the motor and the second flow passage for cooling the cooler is formed between the cooler and the cooling fan.
In a package-type scroll compressor of the type wherein a scroll compressor element having an orbiting scroll which has scroll laps on both sides of an end plate and two stationary scrolls each of which has a scroll lap meshing the scroll lap of the orbiting scroll and forming a compression chamber with the scroll lap of the orbiting scroll respectively; a motor for driving the scroll compressor element; a cooler for cooling an operation gas compressed in the scroll compressor element; a cooling fan disposed on one end of the motor for blasting a cooling air to the cooler; and a casing for accommodating these members.
A fourth embodiment of the present invention for accomplishing the objects described above employs a construction wherein an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Package-type scroll compressor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Package-type scroll compressor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Package-type scroll compressor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2499550

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.