Pacemaker utilizing QT dynamics to diagnose heart failure

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S510000

Reexamination Certificate

active

06671549

ABSTRACT:

FIELD OF THE INVENTION
This invention lies in the field of cardiac device systems and methods and, in particular, implantable systems that have the capacity to acquire data from the patient's heart and to process such data to provide information concerning the patient's heart. More specifically, this invention is directed toward providing an indication of degree of patient heart failure based on information derived from heart signals.
BACKGROUND OF THE INVENTION
The utilization of pacemakers for diagnostic functions as well as pacing and cardioversion therapy has increased along with the capacity of pacemaker devices to collect and store data. Several generations of pacing systems have incorporated schemes for collecting and storing data derived from the patient's heart, as well as data representative of the history of pacemaker functions. This data can be organized to provide an historical picture of the patient's heart, coded, and downloaded to an external device for analysis by a physician. For example, the physician can be provided with cardiac rate histories, instances of ectopic beats, tachycardia episodes, and the like.
More recently, increased attention has been paid to the area of heart failure (alternatively referred to simply as “HF”) and mechanisms for detecting and treating this condition. As with many other diseases, early detection can provide increased opportunities for inhibiting onset and/or for effective treatment. The advent of bi-ventricular pacing systems has provided increased opportunities for treating at least some forms of heart failure. However, initiation of any form of treatment depends upon the availability of accurate information concerning the condition of the patient's heart.
One recognized indicator of heart failure is prolongation of the QT interval (or, simply, “QT”), particularly at low rates associated with rest. It is known that QT interval increases with lower rates and decreases with higher rates. This is because QT has a component that increases directly with the cardiac interval, as well as a stress dependent variation due to the autonomic nervous system. Prolongation, as the term is used here, refers not to the normal increase in QT at lower rates, but to an increase beyond the normal that is found to occur in cases of established heart failure. The literature recognizes that patients with heart failure are characterized with prolongation of the QT interval at low heart rates, although not at high heart rates. “Prolongation of the QT interval in heart failure occurs at low but not at high heart rates.” Davey, Barlow and Hart, Clin. Sci (Colch) May 2000; 98(5): 603-10. The disclosed investigations found that QTc (corrected QT) intervals at rest were significantly longer in heart failure patients, and were associated principally with impairment of left ventricular systolic function.
The use of variations in QT interval or of corrected QTc as an indicator of heart failure has limitations, as stated in the above referenced publication. Although prolongation of QT interval at rest seems to be an excellent indicator of established heart failure, changes in QT by itself have not been shown to provide a reliable prognosis for the patient who is proceeding toward heart failure. What is needed is more information, collected over time, to suggest changes that can be used by the physician, or compared automatically to benchmarks, to more reliably point to onset of heart failure.
U.S. Pat. No. 5,792,197, Nappholz, discloses an implantable rate responsive pacemaker that uses a physiological demand parameter to determine a classification of the degree of patient heart failure. In the illustrated embodiment, minute volume is monitored and used as a physiological demand parameter. Variations of the parameter corresponding to different levels of activity are obtained, and differences in the parameter over time are used to determine the degree of heart failure. QT interval and cardiac contractibility are mentioned as possible parameters. However, the patent reference does not indicate specifically how to utilize QT information, nor does it suggest the range of possibilities for obtaining predictive information from QT variations. Other patents, as listed in Table 1 below, deal with the subject of identifying cardiac events and trying to determine the patient's cardiac condition, but do not optimize the information available from sensed heart signals. Accordingly, there has remained a need to more fully utilize information inherent in QT variations and to utilize that information for prognosis of heart failure.
TABLE 1
U.S. Pat. No.
Inventor(s)
Issue Date
5,511,553
Segalowitz
April 30, 1996
5,749,900
Schroeppel et al.
May 12, 1998
5,792,197
Nappholz
Aug. 11, 1998
6,029,087
Wohlgemuth
Feb. 22, 2000
6,035,233
Schroeppel et al.
March 7, 2000
All patents listed in Table 1 above are hereby incorporated by reference herein in their respective entireties. As those of ordinary skill in the art will appreciate readily upon reading the Summary of the Invention, Detailed Description of the Preferred Embodiments and claims set forth below, many of the devices and methods disclosed in the patents of Table 1 may be modified advantageously by using the teachings of the resent invention.
SUMMARY OF THE INVENTION
This invention addresses the detection and progression of heart failure (HF), and particularly the detection of HF at an early enough stage to enable treatment of the patient with drugs or, in some cases, pacing therapies. The ability to accurately predict or recognize HF at an early stage may, in many cases, enable management of the condition in order to slow down its progression, and prolong a good quality of life.
It is an object of this invention to provide an implantable medical device, and a method of treatment using such device, that optimally utilizes the information inherent in patient cardiac signals to monitor onset of and progression toward heart failure, and to provide predictive indications of heart failure. It is a specific object to utilize dynamic variations of QT interval data, obtained from sensed and also paced cardiac signals. The data is utilized to predict heart failure and to provide indications of current patient degree of heart failure. The dynamic variations are referred to as dynamic QT parameters, and represent variations of QT with rate, i.e., QT(RR), that are measured as patient heart rate is first raised and then lowered. Such dynamic variations provide information indicative of HF that is not available solely from measurement of long term changes of QT at rest.
It is another object of this invention to provide an implantable medical device system and method of treatment wherein QT data is obtained from both right and left ventricles, and stored over time. The QT data from both ventricles provides an important comparison for analysis of patient cardiac condition, particularly the onset of HF.
In accord with the above objective, there is provided a system and method that incorporates an implantable medical device, and that obtains comprehensive data from patient cardiac signals, and in particular the QRS-T portions of the signals. The system analyzes the data and provides current and prognostic indications the patient's cardiac condition. The system and treatment method of this invention utilize not only QT interval data, but also make available data relating to different portions, or segments of the QT complex, i.e., the QRS width, the ST segment, and the T wave width. Each of these segments varies with time and exercise, and in some patients may contain useful prognostic data that is not obtainable just from a measurement of QT interval. As used herein, QT data refers to the QT interval, or QTc, as well as the segment data. In addition, the system and method of this invention are designed to obtain and use dynamic QT data over a range of patient heart rates, so as to capture additional information that is not available simply from the measurement of QT interval changes at rest.
In one embodime

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pacemaker utilizing QT dynamics to diagnose heart failure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pacemaker utilizing QT dynamics to diagnose heart failure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pacemaker utilizing QT dynamics to diagnose heart failure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3133302

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.