Ozonide reducing agent

Organic compounds -- part of the class 532-570 series – Organic compounds – Unsubstituted hydrocarbyl chain between the ring and the -c-...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

540354, 540359, 546261, 549 59, 549472, 549473, 558439, 568 38, 568 55, 568 57, C07B 3100, C07B 3300

Patent

active

057707294

DESCRIPTION:

BRIEF SUMMARY
This is a 371 of PCT/JP94/02224 filed on Dec. 26, 1994.


TECHNICAL FIELD

The present invention relates to an ozonide reducing agent which is used for ozonolysis reaction of an organic compound, the reducing agent being useful for wide applications, safe and inexpensive from a commercial viewpoint and easy to treat for disposal.


BACKGROUND ART

Ozonolysis reaction has been widely commonly carried out as a method for preparing carboxylic acids, aldehydes, ketones and epoxides from organic unsaturated compounds or aromatic compounds. The reaction has been commonly resorted to for industrial purposes (Shin Jikken Kagaku Koza, Ozonolysis reaction is usually conducted by executing two steps, i.e., the step of causing ozone to act on an organic unsaturated compound or an aromatic compound to obtain an ozonide (peroxide) as an intermediate and the step of subjecting the ozonide to oxidization, reduction, hydrolysis and the like to obtain a stable object compound. The present invention relates to the latter step. The term "ozonide" used herein means any of the peroxides produced by ozonolysis reaction, such as .alpha.-ozonide, .beta.-ozonide, hydroxyperoxide, diperoxide and the like. Since an ozonide is in constant danger of explosion and the like, the step of treating the ozonide to obtain a safe object compound in a high yield is presumably a key step for ozonolysis reaction. Generally, the mildest method of treating an ozonide scarcely entailing a side reaction is said to be a published on September 20, 1975 by MARUZEN Co., Ltd.). Such method is carried out using various ozonide reducing agents. However, all of these reducing agents have some problems. The problems of respective reducing agents are given below in (1) to (7).
(1) Acetic acid-zinc reduction (J. Org. Chem., 25, 618 (1960)) is not applicable to a compound which is decomposed with an acid nor to a compound which must be decomposed at a low temperature. In addition, the reduction is not preferable since industrial wastes such as zinc oxide and the like are produced and cause environmental problems.
(2) Catalytic hydrogenation in the presence of a metallic catalyst such as Pt, Pd, Ni or the like (J. Am. Oil Chem. Soc., 42, 236 (1965)) always entails danger of explosion, since hydrogen is passed through a solution of a peroxide in the presence of a metal which is active to the solution. Further, when a halogen type solvent is used, the solvent as such is reduced by hydrogenation, and thus the kind of the solvent to be used is limited.
(3) In reduction with a metal such as Raney nickel, sodium boron hydride and the like (Can. J. Chem., 48, 1105 (1962)), the metal remains as industrial wastes after the treatment and poses environmental problems.
(4) In reduction with a trivalent phosphoric compound such as triphenylphosphine, phosphorous ester and the like (J. Org. Chem., 27, 4498 (1962)), phosphine oxide is not necessarily removed with ease from the reaction system after the treatment, while phosphorous ester produces a peculiar odor which presents an environmental problems. Further, the reduction is not advantageous in view of needs to consider environment and equipment, since a closed system may be needed to meet the strict standards for the drainage of phosphoric wastes.
(5) In reduction with dimethylsulfide which is most commonly used in laboratories (Tetrahedron Letters, 1966, 4273), the reducing agent exhibits a very high reducing power. However, this reducing agent is difficult to use for industrial purposes, since it causes an environmental problem of an offensive odor and involves difficulties of handling a compound with a low flash point.
(6) In reduction with dialkylsulfides and thiols (J. Org. Chem., 26, 4912 (1961)), the reducing agent can not find wide applications, since the agents exhibit a lower reducing power than the above-mentioned dimethylsulfide, produce a peculiar offensive odor, involve break of disulfide bond and side reactions such as addition reaction of thiol.
(7) Other sulfur-based ozonide reducing agents disclosed in lit

REFERENCES:
patent: 3722752 (1973-03-01), Kenkare et al.
patent: 3978021 (1976-08-01), Sagawa et al.
patent: 4035383 (1977-07-01), Sweet
patent: 4203757 (1980-05-01), Eiseman
patent: 4477658 (1984-10-01), Scartazzini et al.
patent: 4764299 (1988-08-01), Salomon
patent: 4940808 (1990-07-01), Schulz et al.
patent: 5126447 (1992-06-01), Torii et al.
patent: 5202478 (1993-04-01), Schermanz et al.
patent: 5373016 (1994-12-01), Brown et al.
Tetrahedron Letters No. 36, 1996 pp. 4273-4278, A new and convenient method for converting olefins to aldehydes, James J. Pappas, et al.
Journal of the American Chemical Society, vol. 105, No. 25, Dec. 14, 1983, Washington, D.C., pp. 7345-7352, Synthesis of beta-lactam antibiotics by the sulpheno-cycloamination, M. Ihara, et al.
Abstract, Database WPI, Derwent Publication Ltd., London, BG; Class B05, AN 91-040134 XP002020277 & JP 02 306 973 A (Otsuka Pharmaceutical), Dec. 20, 1990.
Tetrahedron Letters vol. 32, No. 50, Dec. 9, 1991, Oxford, GB, pp. 7445-7448, A convenient synthesis of 2-exo-Methylene Penam, A potent intermediate of new .beta.-lactam antibiotics synthesis, Hideo Tanaka, et al.
Tetrahedron vol. 37, No. 4, 1981, Oxford, GB, pp. 703-707, Synthesis of 2-oxocephalosporins, D. Hagiwara, et al.
Appell et al., New Reagents for the Reductive Quenching of Ozonolysis Reactions, Synthetic Communications, 25(22) pp. 3589-3595, 1995.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ozonide reducing agent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ozonide reducing agent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ozonide reducing agent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1395634

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.