Compositions – Reductive bleachant – deoxidant – reductant – or generative – Deoxidant or oxygen scavenging
Reexamination Certificate
1998-10-30
2001-05-08
Robinson, Ellis (Department: 1772)
Compositions
Reductive bleachant, deoxidant, reductant, or generative
Deoxidant or oxygen scavenging
C428S035800, C428S457000, C426S118000, C426S395000, C206S524100, C206S524400
Reexamination Certificate
active
06228284
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to oxygen scavenging compositions, to polymeric compositions containing said oxygen scavenging compositions, and further to intermediate shaped structures, e.g., films, coatings, 3-dimensional solids, fibers, webs, and the like, which contain such polymeric compositions, as well as to shaped products, into or onto, which such compositions or structures are incorporated or applied, respectively, e.g., containers, having the subject compositions incorporated as part of or attached to the container's structure.
The oxygen scavenging composition comprises a carrier which contains (a) a non-polymeric oxygen scavenger and (b) a water-insoluble oxygen scavenging catalyst having higher affinity to organics than to water. More specifically, the catalyst is composed of a water-insoluble, compound of a transition metal. The present oxygen scavenging composition provides effective absorption of oxygen from the interior of a container without adversely affecting the color, taste or smell of the packaged material contained therein.
In order to enhance preservation, it is standard practice to package food and other materials within laminated packaging material that generally includes a barrier layer, that is, a layer having a low permeability to oxygen. The sheet material can be thin, in which event it is wrapped around the material being packaged, or it can be sufficiently thick that it forms a container body that is provided with a lid or other separate closure. The polymeric sheet material may constitute most or all of the interior exposed surface area of the container.
It is known to include an oxygen scavenger in a sheet material. The oxygen scavenger reacts with oxygen that is trapped in the package or that permeates into the package. This is described in, for instance, U.S. Pat. Nos. 4,536,409 and 4,702,966 and the prior art discussed in these references. For instance, U.S. Pat. No. 4,536,409 describes cylindrical containers formed from such sheet material and provided with metal lids.
When the container is formed of a glass or metal body and is provided with a hermetically sealed metal closure, the permeation of oxygen through the body and the closure is theoretically impossible because of the impermeability of the materials from which the body and closure are formed. As a practical matter, metal cans can reliably prevent oxygen ingress. However, some oxygen ingress may occur by diffusion through the gasket or the like positioned between a container body and its lid. It has long been recognized that when conventional containers of these types are used for the storage of oxygen sensitive materials, the shelf life of the stored materials is very limited. The quality of the packaged material tends to deteriorate over time, in part because dissolved oxygen typically is present in the pack from the time it is filled; and in part due to oxygen ingress which occurs during storage.
When the container is in the form of a can, the can end or other closure in many instances includes push components or pull components which are intended to be, respectively, pushed or pulled in order to allow removal of the fluid or other material in the container without removing the entire closure from the container. These push or pull components are often defined by discontinuities or lines of weakness in the panel of the closure. Problems that can arise at these lines of weakness or discontinuities include the risk of permeation of oxygen into the container and the risk of corrosion of the metal where the normal protective lacquer coating is ruptured at the lines of weakness or at the discontinuities.
It would be very desirable to be able to improve the shelf life significantly while continuing to use conventional materials for the formation of the container body, the container closure and, where applicable, the gasket between the body and closure.
Various types of oxygen scavengers have been proposed for this purpose. For example, it is well known to package iron powder in a sachet for use with dry foods. See Mitsubishi Gas Chemical Company, Inc.'s literature titled “Ageless®—A New Age in Food Preservation” (date unknown). However, these materials require the addition of water soluble salts to enhance the oxygen scavenging rate and, in the presence of moisture, the salts and iron tend to migrate into liquids, producing off-flavors. Similarly, U.S. Pat. No. 4,536,409 issued to Farrell et al. recommends potassium sulphite as a scavenger, with similar results. U.S. Pat. No. 5,211,875 issued to Speer et al. discloses the use of unsaturated hydrocarbons as oxygen scavengers in packaging films.
It is known in the art that ascorbate compounds (ascorbic acid, its salts, optical isomers, and derivatives thereof), as well as sulfite salts can be oxidized by molecular oxygen, and can thus serve as components of an oxygen scavenging formulation, for example, as a component of a closure compound. For example, U.S. Pat. No. 5,075,362, issued to Hofeldt et al., discloses the use of ascorbates in container closures as oxygen scavengers.
U.S. Pat. No. 5,284,871 issued to Graf relates to the use of an oxygen scavenging composition made of a solution of a reducing agent and a dissolved species of copper which is blended into foods, cosmetics and pharmaceuticals. Cu
2+
ascorbate is used in the examples. The reference teaches that most reducing agents require a transition metal to catalyze oxygen absorption at usable rates (Col. 3, lines 32-38). However, the reference indicates that a relatively high level of Cu
2+
(~5 ppm) are required in the food for scavenging to be effective but indicates that small amounts of Cu
2+
and oxygen in food will cause food spoilage. In order to avoid spoilage, one is required to reduce headspace O
2
or partially flush the container with an inert gas (Col. 5, lines 32-39).
A paper by E. Graf, “Copper (II) Ascorbate: A Novel Food Preservation System”, Journal of Agricultural Food Chemistry, Vol. 42, pages 1616-1619 (1994) identifies copper gluconate as a preferred raw material.
It is also well known in the scientific literature (See “Polymer Compositions Containing Oxygen Scavenging Compounds”, Teumac, F. N.; et al. WO 91/17044, published Nov. 4, 1991, filed on May 1, 1991) that the oxidation rate of ascorbate compounds can be increased significantly by the use of catalysts. Typical oxidation catalysts for ascorbic acid and its derivatives are water soluble transition metal salts. When such catalysts are combined with an ascorbate compound in a polymeric matrix, e.g., a PVC closure formulation, they are effective in catalyzing the oxidation of the ascorbate compound, and increase the oxygen scavenging rate of the ascorbate.
In each of the above references which disclose the use of ascorbate systems or sulfites, the oxygen scavenging systems use active scavenging agents and, if appropriate, catalysts which have high degrees of water solubility. This has been deemed an important property of the agents to provide an effective oxygen scavenging system based on the theory that the agents and the oxygen solubilized in water (from the food ingredient and/or atmospheric moisture trapped in the headspace) all interact in a homogeneous aqueous phase. Thus, high water solubility of the agents and catalyst has been deemed necessary to enhance this interaction and provide for an effective system suitable for commercial application.
However, it has been observed that the water-soluble materials, and in particular, the catalysts, tend to migrate from the polymer matrices in which they are contained causing undesirable effects on the contents (in particular food products) within containers having these materials. Thus, when using these highly water-soluble materials, degradation of the contents due to oxidation is minimized or eliminated but the contents (especially if having water as a component) tend to become discolored, have an off-taste or become odorous.
It is highly desired to provide an effective oxygen scavenging system
Blinka Thomas Andrew
Ebner Cynthia Louise
Figueroa John J.
Robinson Ellis
Troffkin Howard
W. R. Grace & Co.-Conn
LandOfFree
Oxygen scavenging compositions with low migration does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Oxygen scavenging compositions with low migration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oxygen scavenging compositions with low migration will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2510924