Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Rod – strand – filament or fiber
Reexamination Certificate
2000-08-25
2001-07-17
Krynski, William (Department: 1774)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Rod, strand, filament or fiber
C428S375000, C428S389000, C174S1100SR
Reexamination Certificate
active
06261687
ABSTRACT:
The invention relates to an oxygen plasma resistant polymer which may be used as an electrically insulating coating or as an electrical component. More specifically, the invention relates to an oxygen plasma resistant polymer made with a metal oxide sol which may be used to coat electromagnetic coils such as stator coils of an electric motor.
BACKGROUND OF THE INVENTION
In the manufacture of electrical motors, particularly three-phase alternating current electric motors, stator coils are wound in and through a laminated iron core to produce a round stator core. Conventionally, such wound stator cores are made of copper and coated with a varnish material (such as an insulating resin coating) which insulates the copper wires of the stator coils from each other, the copper wires from the iron of the stator core, and the copper wires from the motor housing. In addition, the insulating resin coating or enamel mechanically stabilizes the wires in the stator core so that the vibration of the motor during use does not cause the wires to vibrate and undesirably wear through their enamel insulation thereby exposing the copper stator coils.
Moreover, in the high field intensity environment of an electrical motor, an insulating resin coating is subject to breakdown from oxide erosion resulting from surface corona and embedded corona. Particularly, high field intensity leads to the generation of oxygen plasma which, in turn, oxidizes and breaks down an insulating resin. It is desirable to provide an insulating resin with corona resistance that can lead to the manufacture of electrical motors having a longer life.
Accordingly, curable electrical component coatings include inorganic additives to achieve the desired surface electrical stress endurance. Such inorganic additive materials include alumina, silica and fumed metal oxide particulate additives and other non-transparent materials. Many inorganic additives are by nature resistive to high temperature processing, both in production and in use, and they are resistive to oxidative degradation. Most inorganic additives, however, due to their compositional and physical makeup, require the use of high shear mixing when incorporated into a polymer to achieve a uniform, homogeneous composition. High shear mixing inherently creates voids in the resulting polymer coating due to the entrapment of air in the protective polymer coating mixture. The presence of voids in the cured polymer coating allows corona generation which attacks the underlying substrate and degrades the polymer coating itself under electrical stress when in use. Accordingly, it is desired to provide an additive which does not require high shear mixing and/or which does not lead to the presence of voids in a polymer which it is incorporated.
In photocurable resin systems, using non-transparent material additives with photocure processing techniques results in non-uniform curing, as the light energy curing agent may unevenly penetrate the curable resin, due to particle blockage and scattering, thus curing some resin segments and not curing others. Another problem caused by the same uneven, non-uniform penetration of the various additives is the premature cure of the resin. When using a photo initiated curing process, it is generally necessary to have particles of less than 0.2 microns. Particles in excess of 0.2 microns are capable of scattering light, thus potentially resulting in uneven curing. Commercially available particulate fillers which require high speed mixing to maintain homogeneity tend to agglomerate causing regions of higher particle concentration and regions of lower concentration. This can lead to accelerated oxidation in the particle-poor regions. Accordingly, it is desired to provide an additive which does not agglomerate, which is small in size, transparent in nature and/or capable of uniform distribution.
One problem with using metal oxide particulate material in a liquid substance is the propensity for precipitation of the material from a solution over time, thus limiting the shelf life of the solution. For example, the use of commercially available fumed alumina or silica results in precipitation of the particulate metal oxide material after about one week in storage. Since fumed alumina or silica is of high viscosity, increased amounts of solvent are needed to attain a coatable composition. Accordingly, it is desired to provide an additive which does not precipitate from solution and/or has a desirable viscosity.
U.S. Pat. No. 4,760,296 generally relates to the inclusion of organosilicates or organoaluminates as the organo-metallic material of choice to achieve improved electrical stress endurance of an epoxy resin system. The '296 patent also relates to organoaluminates such as aluminum acetylacetonate and aluminum di-sec-butoxide acetoacetic ester chelate, which can be used to produce clear resins. However, the organoaluminum compounds of the '296 patent are not suitable for a variety of resin systems. This is because they tend to (1) plasticize the cured articles, (2) generate nonuniform distribution of the additives in the cured articles, and/or (3) bleach out with aging. The same three disadvantages are associated with using fumed aluminum oxide in resin systems. Using fumed aluminum oxide also involves the disadvantages that a clear solution cannot be formed and that the viscosity is undesirably high, further contributing to the creation of voids in the resulting coating thus rendering the coating susceptible to corona attack.
Plasmas are useful for etching metals, semiconductors and dielectrics during the processing of microelectronic materials such as wafers. Plasmas are also useful for cleaning, de-scumming, stripping and passivating various surfaces of microelectronic materials. Plasma is an unstable mixture of positive ions, negative ions and free radicals. Examples of plasma include energized silicon tetrafluoride, Freons and oxygen. Accordingly, a plasma environment is a very severe and potentially damaging environment, especially to polymeric materials. In the specific case of oxygen, monoatomic oxygen attack (oxygen plasma) can be very damaging to polymeric materials. This can be a problem if it is desired not to damage a polymeric substance in a plasma environment. It is therefore desirable to provide a polymeric substance which is plasma resistant.
These problems are minimized and/or eliminated by using the oxygen plasma resistant polymers made with metal oxide sols of the present invention.
SUMMARY OF THE INVENTION
In one embodiment, the present invention relates to a substrate for an electrical device including a coating, wherein the coating comprises an oxygen plasma resistant polymer prepared from a mixture containing a polymerization material and a polycondensation product of a partially hydrolyzed chelated metal oxide precursor.
In another embodiment, the present invention relates to a component for an electrical device comprising an oxygen plasma resistant polymer prepared from a mixture containing a polymerization material and a polycondensation product of a partially hydrolyzed chelated metal oxide precursor.
In yet another embodiment, the present invention relates to an electromagnetic coil having a coating, wherein the coating comprises an oxygen plasma resistant polymer prepared from a mixture containing a polymerization material; and a polycondensation product of a partially hydrolyzed chelated metal oxide precursor, wherein the polycondensation product has an average diameter less than about 10 nm.
In still yet another embodiment, the present invention relates to a microelectronic device, such as a semiconductor device, comprising an oxygen plasma resistant polymer prepared from a mixture containing a polymerization material and a polycondensation product of a partially hydrolyzed chelated metal oxide precursor.
The insulating resins and methods of increasing corona resistance are useful for insulation materials used in electric motors. The oxygen plasma resistant polymer of the present invention is particularly well
Chung Young Jin
Ryang Hong-Son
Snyder, II Joseph T.
Sung An-Min Jason
Gerasimow A. M.
Gray J. M.
Krynski William
Reliance Electric Technologies LLC
Turocy Gregory
LandOfFree
Oxygen plasma resistant polymer for electrical devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Oxygen plasma resistant polymer for electrical devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oxygen plasma resistant polymer for electrical devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2463158