Oxidatively stable alpha-amylase

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S201000, C435S203000, C435S274000, C435S275000, C435S173300, C435S471000, C435S485000, C252S175000, C252SDIG018

Reexamination Certificate

active

06297037

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel alpha-amylase mutants having an amino acid sequence not found in nature, such mutants having an amino acid sequence wherein one or more amino acid residue(s) of a precursor alpha-amylase, specifically any oxidizable amino acid, have been substituted with a different amino acid. The mutant enzymes of the present invention exhibit altered stability/activity profiles including but not limited to altered oxidative stability, altered pH performance profile, altered specific activity and/or altered thermostability.
BACKGROUND OF THE INVENTION
Alpha-amylases (alpha-1,4-glucan-4-glucanohydrolase, EC3.2.1.1) hydrolyze internal alpha-1,4-glucosidic linkages in starch largely at random, to produce smaller molecular weight malto-dextrins. Alpha-amylases are of considerable commercial value, being used in the initial stages (liquefaction) of starch processing; in alcohol production; as cleaning agents in detergent matrices; and in the textile industry for starch desizing. Alpha-amylases are produced by a wide variety of microorganisms including Bacillus and Aspergillus, with most commercial amylases being produced from bacterial sources such as
B. licheniformis, B. amyloliquefaciens, B. subtilis
, or
B. stearothermophilus
. In recent years the preferred enzymes in commercial use have been those from
B. licheniformis
because of their heat stability and performance, at least at neutral and mildly alkaline pH's.
Previously there have been studies using recombinant DNA techniques to explore which residues are important for the catalytic activity of amylases and/or to explore the effect of modifying certain amino acids within the active site of various amylases (Vihinen, M. et al. (1990) J. Bichem. 107:267-272; Holm, L. et al. (1990) Protein Engineering 3:181-191; Takase, K. et al. (1992) Biochemica et Biophysica Acta, 1120:281-288; Matsui, I. et al. (1992) Febs Letters Vol. 310, No. 3, pp. 216-218); which residues are important for thermal stability (Suzuki, Y. et al. (1989) J. Biol. Chem. 264:18933-18938); and one group has used such methods to introduce mutations at various histidine residues in a
B. licheniformis
amylase, the rationale for making substitutions at histidine residues was that
B. licheniformis
amylase (known to be thermostable) when compared to other similar Bacillus amylases, has an excess of histidines and, therefore, it was suggested that replacing a histidine could affect the thermostability of the enzyme (Declerck, N. et al. (1990) J. Biol. Chem. 265:15481-15488; FR 2 665 178-A1; Joyet, P. et al. (1992) Bio/Technology 10:1579-1583).
It has been found that alpha-amylase is inactivated by hydrogen peroxide and other oxidants at pH's between 4 and 10.5 as described in the examples herein. Commercially, alpha-amylase enzymes can be used under dramatically different conditions such as both high and low pH conditions, depending on the commercial application. For example, alpha-amylases may be used in the liquefaction of starch, a process preferably performed at a low pH (pH <5.5). On the other hand, amylases may be used in commercial dish care or laundry detergents, which often contain oxidants such as bleach or peracids, and which are used in much more alkaline conditions.
In order to alter the stability or activity profile of amylase enzymes under varying conditions, it has been found that selective replacement, substitution or deletion of oxidizable amino acids, such as a methionine, tryptophan, tyrosine, histidine or cysteine, results in an altered profile of the variant enzyme as compared to its precursor. Because currently commercially available amylases are not acceptable (stable) under various conditions, there is a need for an amylase having an altered stability and/or activity profile. This altered stability (oxidative, thermal or pH performance profile) can be achieved while maintaining adequate enzymatic activity, as compared to the wild-type or precursor enzyme. The characteristic affected by introducing such mutations may be a change in oxidative stability while maintaining thermal stability or vice versa. Additionally, the substitution of different amino acids for an oxidizable amino acids in the alpha-amylase precursor sequence or the deletion of one or more oxidizable amino acid(s) may result in altered enzymatic activity at a pH other than that which is considered optimal for the precursor alpha-amylase. In other words, the mutant enzymes of the present invention may also have altered pH performance profiles, which may be due to the enhanced oxidative stability of the enzyme.
SUMMARY OF THE INVENTION
The present invention relates to novel alpha-amylase mutants that are the expression product of a mutated DNA sequence encoding an alpha-amylase, the mutated DNA sequence being derived from a precursor alpha-amylase by the deletion or substitution (replacement) of one or more oxidizable amino acid. In one preferred embodiment of the present invention the mutant result from substituting a different amino acid for one or more methionine residue(s) in the precursor alpha-amylase. In another embodiment of the present invention the mutants comprise a substitution of one or more tryptophan residue alone or in combination with the substitution of one or more methionine residue in the precursor alpha-amylase. Such mutant alpha-amylases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding a naturally occurring or recombinant alpha-amylase to encode the substitution or deletion of one or more amino acid residues in a precursor amino acid sequence.
Preferably the substitution or deletion of one or more amino acid in the amino acid sequence is due to the replacement or deletion of one or more methionine, tryptophan, cysteine, histidine or tyrosine residues in such sequence, most preferably the residue which is changed is a methionine residue. The oxidizable amino acid residues may be replaced by any of the other 20 naturally occurring amino acids. If the desired effect is to alter the oxidative stability of the precursor, the amino acid residue may be substituted with a non-oxidizable amino acid (such as alanine, arginine, asparagine, aspartic acid, glutamic acid, glutamine, glycine, isoleucine, leucine, lysine, phenylalanine, proline, serine, threonine, or valine) or another oxidizable amino acid (such as cysteine, methionine, tryptophan, tyrosine or histidine, listed in order of most easily oxidizable to less readily oxidizable). Likewise, if the desired effect is to alter thermostability, any of the other 20 naturally occurring amino acids may be substituted (i.e., cysteine may be substituted for methionine).
Preferred mutants comprise the substitution of a methionine residue equivalent to any of the methionine residues found in
B. licheniformis
alpha-amylase (+8, +15, +197, +256, +304, +366 and +438). Most preferably the methionine to be replaced is a methionine at a position equivalent to position +197 or +15 in
B. licheniformis
alpha-amylase. Preferred substitute amino acids to replace the methionine at position +197 are alanine (A), isoleucine (I), threonine (T) or cysteine (C). The preferred substitute amino acids at position +15 are leucine (L), threonine (T), asparagine (N), aspartate (D), serine (S), valine (V) and isoleucine (I), although other substitute amino acids not specified above may be useful. Two specifically preferred mutants of the present invention are M197T and M15L.
Another embodiment of this invention relates to mutants comprising the substitution of a tryptophan residue equivalent to any of the tryptophan residues found in
B. licheniformis
alpha-amylase (see FIG.
2
). Preferably the tryptophan to be replaced is at a position equivalent to +138 in
B. licheniformis
alpha-amylase. A mutation (substitution) at a tryptophan residue may be made alone or in combination with mutations at other oxidizable amino acid residues. Specifically, it may be advantageous to modify

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oxidatively stable alpha-amylase does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oxidatively stable alpha-amylase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oxidatively stable alpha-amylase will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2602110

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.