Oxidation process

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S774000

Reexamination Certificate

active

06586624

ABSTRACT:

The present invention concerns the selective oxidation of 1,4-dichlorobenzene to 2,5-dichlorophenol.
U.S. Pat. No. 4,529,824 describes in general certain complexes of vanadium, niobium and tantalum and their use in hydroxylating aromatic hydrocarbons either as reactant or catalyst. Additionally, Moiseeva et al. Kinet. Katal 29(4), pp 970-4 (1988) describe oxidation of benzene with vanadium compounds albeit not selectively for phenol (oxidation proceeds at least in part to quinone).
It has now surprisingly been found that oxidation of 1,4-dichlorobenzene to 2,5-dichlorophenol can be effected with improved yield and selectivity when carried out in the presence of certain vanadium derivatives and in the presence of an &agr;-hydroxy-, dibasic-, tribasic- or sulfonic acid.
The present invention therefore provides a process for the preparation of 2,5-dichloro-phenol which comprises selectively oxidizing 1,4-dichlorobenzene using a peroxo-, hydroperoxo-, superoxo- or alkylperoxo-vanadium species in the presence of an acid selected from an &agr;-hydroxy-, dibasic-, tribasic- or sulfonic acid or mixtures thereof.
The reaction may be improved by optional addition of a second acid component selected from formic acid or an alkanoic acid.
The active vanadium species may be prepared by using an oxidation agent. Suitable oxidation agents included organic peroxides such as peroxycarboxylic acids, RCO
3
H, alkyl hydroperoxides, ROOH, and dialkylperoxides, ROOR, for example peroxyacetic acid, peroxybenzoic acid, peroxytormic acid, t-butyl hydroperoxide, and di-t-butylperoxide and inorganic peroxides such as peroxydisulfuric acid and peroxoborates. The preferred peroxide for use in the invention however, is hydrogen peroxide, especially in aqueous solution. The present process can be carried out at dilutions of 3% to 90% with efficient utilization of H
2
O
2
and improved yields. However, ca 20-70% e.g. 35-70% aqueous H
2
O
2
is preferred. The proportions of H
2
O
2
to 1,4-dichlorobenzene may vary between 0.1 and 5, e.g. between 0.25 and 3. It has been determined that particularly high efficiency may be achieved using approximately equimolar amounts of H
2
O
2
and 1,4-dichlorobenzene, e.g. ca 0.9 to ca 1.1 molar proportion of H
2
O
2
per mole of 1,4-dichlorobenzene.
The oxidizing agent is preferably added slowly e.g. dropwise or subsurface to the other reactants with thorough and continuous mixing.
The reaction may be carried out by continuous feed of the reactants or as a batch process.
When hydrogen peroxide is employed addition of small amounts of stabilizers may be of benefit to the reaction in some cases. Examples of such stabilizers include zinc salts, phosphates, pyrophosphates, ascorbic acid, 2,6-di-tert-butyl-4-methylphenol, 5-tert-butyl-4-hydroxy-2-methylphenylsulfide, 8-hydroxy-quinoline or tin compounds such as stannic oxide.
Alternatively use of highly stabilized commercial grades of hydrogen peroxide such as Super D H
2
O
2
(FMC, Rockland, Me.) or Albone 35CG or 50CG (DuPont Co., Wilmington, Del.) can give superior yield in some conditions.
The peroxo-, hydroperoxo-, superoxo- or alkylperoxo-vanadium species may be and preferably is generated in situ from pure vanadium or from vanadium in the form of a suitable oxide, salt, acetoacetonate or other derivative.
The vanadium may alternatively be used in the form of a polyoxoanion such as decavanadate [V
10
O
28
]
6−
which is generated in situ by employing suitable salts such as e.g. sodium ammonium decavanadate. Keggin type mixed addenda heteropolyanions containing vanadium atoms of the general formula [XVnM
12
-nO
40
]
(3+m)−
where X=P or Si, M=Mo or W, and n=1 to 3, are also effective. (When X=P, m=n; and when X=Si, m=n+1). Other useful Keggin types include molybdo-vanado-tungstophosphoric heteropolyanions of the general formula [PMo
3−n
VnW
9
O
40
]
(3+n)−
.
Suitable vanadium forms include oxides, acetoacetonates, alkoxy derivatives, sulfates, nitrates, halides, oxyhalides, alkylthiocarbamates or metalates with other cations, (e.g. ammonium metavanadate NH
4
VO
3
or polyoxovanadate salts such as sodium ammonium decavanadate).
Preferred vanadium forms include oxides, acetoacetonates, alkoxymetal oxides and polyoxoanionic salts such as vanadium (V) oxide (V
2
O
5
) and sodium ammonium decavanadate.
A discussion of peroxo-, hydroperoxo-, superoxo- and alkylperoxo species can be found in Conte et al. in Organic Peroxides Ed. W. Ando, John Wiley & Sons (1992) (pp 559-598).
General descriptions of polyoxoanions and heteropolyanions can be found as follows: Pope, Isopolyanions and Heteropolyanions in Comprehensive Coordination Chemistry (eds. Wilkinson, Gillard & McCleverty), 1987, Ch. 38; Day et al., Science v. 228 n 4699 pp 533-541; Jeannin et al., Pure and Applied Chem. v 59 n 11, pp 1529-1548, 1987; and Pope, Heteropoly and Isopoly Oxometalates, Springer Verlag 1983, Neumann and de la Vega, J. Mol. Catal., v 84, pp 93-108 (1993); Ono, Perpectives in Catalysis (Eds J. M. Thomas and K. I. Zamaraiev), 1992, pp 431-464, Blackwell Scientific Publ., Oxford, the contents of which in this respect are incorporated by reference.
Discussion of hydroperoxide oxidising agents and metal derivatives may also be found in U.S. Pat. Nos. 3,350,422; 3,351,635; 3,360,584; 3,360,585; and 3,662,006.
The vanadium derivatives can be present in amount equivalent to between 0.001 and 100 mol % of metal. Preferably catalytic amounts of 0.05 to 15 mol % are employed.
The vanadium derivative may be recycled and regenerated. For example when an oxide such as vanadium (V) oxide is used the spent catalyst can be heated in air (cf Polish Patent PL 73-165695; C.A. 87.91418) or treated with hydrogen peroxide. Alternatively, the catalyst may be recovered and recycled as is.
The acid component of the process according to the invention is selected from an &agr;-hydroxy-, dibasic-, tribasic- or sulfonic acid. Examples of such acids include oxalic, malonic, 1,2,4-butanetricarboxylic, methanesulfonic, citric, lactic, 3-phenyllactic, 3-chlorolactic, tartaric, glycolic, a phosphoric acid (e.g. phosphoric acid itself, pyrophosphoric acid, polyphosphoric acid and functional equivalents, e.g. phosphorous pentoxide alone or with methanesulfonic acid; cf Eaton et al. J. Org. Chem., v 38, n 23, pp 4071-73(1973)) alkylphosphonic or arylphosphonic acids, e.g. methyl phosphonic, 3-phosphonopropionic, phosphonoacetic, mandelic, glyceric, malic, gluconic, 2,6-pyridinedicarboxylic, sulfuric, o-, m- or p-phthalic and mixtures thereof. In some cases salt forms may be employed e.g. sodium phosphate.
Such acids may be employed where appropriate in various isomeric forms and racemic mixtures thereof. Particularly preferred acids are selected from oxalic, a phosphoric acid and mixtures thereof. The following articles discuss the interaction of vanadium salts with such acids. Caldeira et al. J. Mol. Struct., v. 174 pp 461-466 (1988); Gil, Pure & Appl. Chem., v 61 n 5, pp 841-848 (1989); Lee et al., Bull Korean Chem. Soc., v 14, n 5, pp 557-561 (1993); Bhattacharjee et al., Can. J. Chem., v 70, pp 2245-8, (1992); Vuletic et al., J.C.S. Dalton Transactions (D.T.), pp 1137-41, 1973; Begin et al., Inorg. Chem., v 14, n 8, pp 1785-90, (1975); Schwendt et al., Z. anorg. allg. Chem., v 466, pp 232-6, (1980); Campbell et al., Inorg. Chim. Acta., v 77, pp L215-6, (1983); Stomberg, Acta Chem. Scand., A40, pp 168-76, (1986); Tracey et al., Inorg. Chem., v 26, pp 629-38 (1987); Tracey et al., Inorg. Chem., v 29, pp 2267-71 (1990); Lee, Bull. Korean Chem. Soc., v 12, n 3, pp 243-4, (1991); Farrell et al., Aust. J. Chem., v 48, pp 763-70 (1995).
The quantity of such acids employed will typically be between 1 and 1000, e.g. 1 to 150 equivalents with respect to the vanadium derivative, for example vanadium (V) oxide. For example when employing phosphoric acid ca 65-75 equivalents with respect to the vanadium catalyst are preferred. These acids are preferably used in highly concentrated

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oxidation process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oxidation process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oxidation process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3034650

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.