Oxidation polymer of a substituted phenol

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S212000, C528S218000, C568S636000, C568S637000

Reexamination Certificate

active

06576800

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a novel oxidation polymer of a substituted phenol.
BACKGROUND OF THE INVENTION
Conventionally, for an oxidation polymer of a substituted phenol, though concern has been concentrated mainly on oxidation polymers of 2,6-di-substituted phenols, recently, there is also a notice on oxidation polymers of phenols having no substituent at the 2- and/or the 6-position (Kagaku to Kogyo, vol. 53, no. 4, pp. 501 to 505 (2000)).
On the other hand, aromatic polymers carrying a saturated hydrocarbon group having a large number of carbon atoms have been developed, and various characteristics have been found regarding the crystallinity, liquid crystallinity, viscoelasticity, solubility, and the like, of the polymers. In Macromolecules, 29, 1337, (1996), aromatic polyesters as described above are described, and in Macromolecules, 27, 7754 (1994), polyanilines as described above are described.
However, regarding the oxidation polymers of phenols including no substituent on the 2- and/or the 6-position having a saturated hydrocarbon group with a large number of carbon atoms, only an oxidation polymer of nonylphenol has been reported (J. Electroamal. Chem., 290, 79 (1990)), and there is no description of the crystallinity of this polymer. Further, also regarding oxidation polymers of 2,6-di-substituted phenols carrying a saturated hydrocarbon substituent having a large number of carbon atoms, only those carrying a substituent having 14 or less carbon atoms, such as an oxidation polymer of 2-methyl-6-tetradecylphenol (J. Polym. Sci. Part A-1, 9, 2361 (1971)), an oxidation polymer of 2-methyl-6-(2-tetradecyl)phenol (Macromolecules, 5, 676 (1972)) and the like, have been reported, and there is also no description regarding crystallinity thereof.
In poly(1,4-phenylene oxide) and poly(2,5-dimethyl-1,4-phenylene oxide), which are oxidation polymers of a phenol including no substitution on the 2- and/or the 6-position, the crystal melting point derived from the main chain is observed even after melting-cooling, while in poly(2,6-dimethyl-1,4-phenylene oxide), the crystal melting point is not detected at all after melting-cooling (Kagaku to Kogyo, vol. 53, no. 4, pp. 501 to 505 (2000)). Namely, in general, it may be guessed that the oxidation polymers of 2,6-di-substituted phenols do not cause crystallization easily, and crystallization does not occur even if the number of carbon atoms of a substituent is 14.
SUMMARY OF THE INVENTION
The present invention is an oxidation polymer of a substituted phenol, which is obtained by oxidative polymerization of at least one substituted phenol compound selected from the group consisting of a substituted phenol compound represented by the following formula (Ia), and a 2,6-di-substituted phenol compound represented by the following formula (Ib), wherein the oxidation polymer has a number-average degree of polymerization of 3 or more:
wherein, in formula (Ia), R
1
, R
2
, R
3
, and R
4
each individually represent a hydrogen atom, a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted hydrocarbon oxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted mercapto group, or a halogen atom; R
1
and R
2
, R
2
and R
3
, or R
3
and R
4
may form a ring; provided that at least one of R
1
to R
4
represents a substituted or unsubstituted, saturated hydrocarbon group having 10 or more carbon atoms, and R
1
and/or R
4
represent a hydrogen atom; and
wherein, in formula (Ib), R
11
represents a substituted or unsubstituted, saturated hydrocarbon group having 15 or more carbon atoms, and R
12
is the same group as R
11
, or when R
12
is different from R
11
, R
12
represents a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted hydrocarbon oxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted mercapto group, or a halogen atom.
Further, the present invention is an oxidation polymer of a substituted phenol, which is obtained by oxidative polymerization of at least one substituted phenol compound selected from the group consisting of a substituted phenol compound represented by the formula (Ia), and a 2,6-di-substituted phenol compound represented by the formula (Ib), wherein the oxidation polymer has a number-average degree of polymerization of 3 or more, and a crystal melting point of 5 J/g or more, −100° C. or higher and less than 300° C.:
wherein, in formula (Ia), R
1
, R
2
, R
3
, and R
4
each individually represent a hydrogen atom, a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted hydrocarbon oxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted mercapto group, or a halogen atom; R
1
and R
2
, R
2
and R
3
, or R
3
and R
4
may form a ring; provided that at least one of R
1
to R
4
represents a substituted or unsubstituted, saturated hydrocarbon group having 10 or more carbon atoms, and R
1
and/or R
4
represent a hydrogen atom; and
wherein R
11
represents a substituted or unsubstituted, saturated hydrocarbon group having 15 or more carbon atoms (preferably having 16 or more carbon atoms), and R
12
is the same group as R
11
, or when R
12
is different from R
11
, R
12
represents a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted hydrocarbon oxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted mercapto group, or a halogen atom.
Other and further features, and advantages of the invention will appear more fully from the following description.
DETAILED DESCRIPTION OF THE INVENTION
The oxidation polymer of a substituted phenol of the present invention is an oxidation polymer, which is obtained by oxidative polymerization of at least one compound selected from the group consisting of a substituted phenol compound represented by the formula (Ia), and a 2,6-di-substituted phenol compound represented by the formula (Ib), wherein the oxidation polymer has a number-average polymerization degree of 3 or more.
The substituted phenol compounds represented by the formula (Ia) are explained below.
When R
1
to R
4
in the above-mentioned formula (Ia) represent a hydrocarbon group, it is preferably an alkyl group having 1 to 100 carbon atoms (more preferably having 1 to 50 carbon atoms), a cycloalkyl group having 3 to 100 carbon atoms (more preferably having 3 to 50 carbon atoms), an aralkyl group having 7 to 30 carbon atoms (more preferably having 7 to 20 carbon atoms, particularly preferably having 7 to 9 carbon atoms) or an aryl group having 6 to 30 carbon atoms (more preferably having 6 to 20 carbon atoms, particularly preferably having 6 to 9 carbon atoms). Specific examples thereof include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, t-butyl group, pentyl group, cyclopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, benzyl group, 2-phenylethyl group, 1-phenylethyl group, phenyl group, 4-methylphenyl group, 4-ethylphenyl group, and the like.
When R
1
to R
4
in the above-mentioned formula (Ia) represent a substituted hydrocarbon group, it is preferably an alkyl group having 1 to 100 carbon atoms (more preferably having 1 to 50 carbon atoms), a cycloalkyl group having 3 to 100 carbon atoms (more preferably having 3 to 50 carbon atoms), an aralkyl group having 7 to 30 carbon atoms (more preferably having 7 to 20 carbon atoms, particularly preferably having 7 to 9 carbon atoms), or an aryl group having 6 to 30 carbon atoms (more preferably having 6 to 20 carbon atoms, particularly preferably having 6 to 9 carbon atoms), each of which is substituted by a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a substituted amino group, and the like. Specific examples thereof include a trifluoromethyl group, 2-t-butyloxyethyl group, 3-dimethylaminopropyl group, and the like.
When R
1
to R
4
in the above-mentioned formula (Ia) represent a hydrocarbon oxy group, it is preferably an alkoxy group having

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oxidation polymer of a substituted phenol does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oxidation polymer of a substituted phenol, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oxidation polymer of a substituted phenol will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3107993

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.