Output control device and image processing apparatus and...

Facsimile and static presentation processing – Static presentation processing – Memory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C358S001110, C358S001120, C358S001170, C358S001180, C358S296000

Reexamination Certificate

active

06304336

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to an output control device, to an image processing apparatus and method and to a storage medium. More particularly, the present invention relates to an output control device, to an apparatus and method for image processing, which are adapted to output image data that is generated by performing form (or forms) overlay processing, and to a storage medium.
2. Description of the Related Art
Page printers are operative to store an output image of one page in a bit map memory thereof and to further print the stored output image. There are two kinds of printing methods to be used in this case: a full paint method (namely, a full page printing method) which requires a full page bitmap (or bit map); and a banding method (namely, a band printing method) for forming an output image of one page by using a band memory which has a storage capacity of a fraction of one page.
In the case of the full paint method, a bitmap memory of one page is needed. Data to be printed is transferred to a printing mechanism portion after an image is generated on the bitmap memory. In the case of this method, when a resolution and a (printing) paper size are, for example, 600 dpi (dots per inch) and A3(-size), respectively, a memory of about 8 MB (megabytes) is needed as a bitmap memory. However, even in the cases that a large quantity of data should be printed and that data requiring long image generation time should be printed, output images, each of which is of one page, can be surely generated. Printed outputs corresponding to input data, therefore, can be ensured.
On the other hand, the banding method is to form an image correspondingly to each band by using the memory having a storage capacity of a fraction of one page. In this case, it is necessary that data of one page to be printed should be preliminarily stored in the device as an intermediate code and that the generation and transfer of an output image should be controlled on the basis of a synchronization signal, which is sent from a printing mechanism portion, by utilizing a bitmap memory of a fraction of one page as a ring buffer. In the case of this method, the device can operate by using a memory which has a lower storage capacity in comparison with the memory capacity of the memory used in the case of the full paint method. Moreover, in the case of the banding method, the device can simultaneously perform both of the generation of an output image and the transfer of the output image to the printing mechanism portion. Thus, the device can perform such processing at a high speed.
In the case that data are printed by performing each of the aforementioned two print control methods, when printing document data representing a document, such as a form, each page of which is represented by same data, the form data is preliminarily stored in a printer. Thereafter, numeric character data (hereunder sometimes referred to as post-entering data (namely, ordinary (variable) data)) to be (post-) entered up in blanks in the form are transferred thereto. Then, the printing of output image data is performed by utilizing the form overlay function of synthesizing the output image data from the stored form data and the ordinary data.
In the case of a conventional form overlay system, form data transferred from a host computer, is stored in the form of PDL (namely, Page Description Language) in a storage area of a printer. Then, post-entering data is inputted thereto. Upon completion of analysis of this data, the form data preliminarily stored in the form of PDL is read and an intermediate code is generated by detecting an event (for instance, a form feed instruction) that indicates the completion of the analysis. Subsequently, output image data is generated by being synthesized from the form data and the post-entering data on a bitmap memory (incidentally, this method is called an event-driven macro-method).
This method has drawbacks in that an intermediate code should be generated by analyzing the form data correspondingly to each page of the document and that processing time increases.
Further, although the form data corresponding to each page of the document is the same data, an intermediate code is generated correspondingly to each page of the document as a part of the post-entering data. Thus, the pages cannot have an intermediate code in common. Consequently, this method has another drawback in that an intermediate code area increases.
Therefore, a conventional system having the form overlay function according to another method (hereunder sometimes referred to as an intermediate code method) may be adapted so that intermediate code data is stored in a storage area in a printer after the intermediate code data is generated from form data (namely, PDL data) sent from a host computer and thereafter, output image data is generated by reading both of the intermediate code, which is generated from post-entering data, and the form data, which is preliminarily stored in the intermediate code form, and by being then synthesized from the form data and the post-entering data on a bitmap memory.
Conventional intermediate code method, however, has a drawback in that the necessary size (or storage capacity) of a storage area, in which form data is stored in the intermediate code form, of a registration memory increases in comparison with the case where the form data is stored therein in PDL form.
Moreover, the conventional intermediate code method further has drawbacks in that the necessary storage capacity of the storage (or registration) area of the registration memory for registration of form data therein is not found (or determined) until the analysis of the form data is performed in the printer and an intermediate code is generated therein, that thus, for example, the storage capacity of the registration area cannot be managed by the host computer, and that consequently, an overflow error occurs in the registration memory, and the form data cannot be registered therein normally.
Furthermore, in the case of the conventional intermediate code method, input image data is processed (for instance, scalable font data is stored after converted into a bitmap which has a predetermined size) so as to facilitate the generation of a rasterized image. Thus, the conventional intermediate code method has another drawback in that the scaling of the registered form data results in deterioration in picture quality and also results in reduction in processing speed.
Further, the printing of data on A4-size sheet can be realized in a printer, which can print data on A3-size sheet, by feeding A4-size sheet in longitudinal and lateral directions. However, in the case of the conventional intermediate code method, the rotation of an image is performed so as to facilitate the generation of a corresponding rasterized image. Thus, both of form data for feeding A-4 size sheet in a longitudinal direction and form data for feeding A4-size sheet in a lateral direction should be stored in the registration memory. Consequently, the conventional intermediate code method further has another drawback in that the necessary storage capacity of the registration memory increases.
Additionally, in the case of the conventional intermediate code method, when using a printer of the variable output resolution type that can change an output resolution, an input image is processed so as to facilitate the generation of a corresponding rasterized image. Thus, form data of the number corresponding to the output resolution should be stored in the registration memory. Consequently, the conventional intermediate code method has a drawback in that the necessary storage capacity of the registration memory further increases.
As described herein-above, in the case of the conventional intermediate code method, the system should have all of intermediate codes respectively corresponding to changes in generation conditions for performing the printing of the post-entering data. Thus, this conventional method has the drawback in that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Output control device and image processing apparatus and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Output control device and image processing apparatus and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Output control device and image processing apparatus and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2585981

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.