Oscilloscope probe with fiber optic sensor for measuring...

Optical waveguides – Optical waveguide sensor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S002000, C385S003000, C356S477000

Reexamination Certificate

active

06603891

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an oscilloscope probe with a fiberoptic sensor for measuring floating electrical characteristics.
2. The Prior Art
Conventionally built oscilloscope probes comprise a sample tip which has to be adapted to the device under test. The probe is generally connected by an electrical wire to an oscilloscope, and includes an electrical component for adjusting the voltages which have to be measured within the measurement range of the oscilloscope, such as a resistive divider or amplifier. To measure voltages with a reference potential which is different from that of the oscilloscope, active differential probes are used. The maximum potential difference to be bridged, between the reference potential of the oscilloscope and the reference potential of the measurement object being tested is determined by the maximum common-mode input voltage range of the measurement amplifier used. Tests on a very high voltage potential cannot be performed this way. Interferences via the electrical wire to the oscilloscope (e.g. to switching transistors in power supplies and in the drive technique) are due to the rapidly changing potential difference or high voltage pulse rate. Moreover, measuring electrical signals in an environment surrounded by strong electromagnetic fields leads to interferences in the test cable setup. Ground loops, built via the test wire due to contact to ground of the device under test with the oscilloscope, also result in distorted test results, or make measurements impossible.
Problems also occur when, for example, a device under test is specifically loaded with unitized glitches (e.g. Burst test) within the context of an interference immunity test. As a result of the physical proximity of the electrical wire to the oscilloscope, there are unwanted interferences in the test setup. Therefore, useful tests can be impossible. Measurements on the device under test within the context of an interference radiation immunity test (HF-radiation) cannot be performed with conventional probes either, as there are interferences in the test cable setup.
Optoelectronic oscilloscope probes with active electronical components such as an amplifier, LED or laserdiode in the sensor head need electrical energy for operation, which has to be supplied by a battery/accumulator. The service life of this energy source is limited. Therefore the battery in the sensor needs to be replaced regularly. Replacing the battery makes long-term or continuous measurements difficult or impossible.
SUMMARY OF THE INVENTION
The present invention provides a means of accurately measuring floating analog or digital electrical signals of a device under test, in view of the above mentioned electrical interferences, and thereby avoids the need of an electrical auxiliary power supply for the operation of the sensor head. The invention provides an oscilloscope probe with a fiber optic sensor for measuring floating electrical signals of test devices.
In the invention, energy in the form of light with a continuous intensity is fed to a sensor head over a fiber optic cable. The light intensity is modulated in an electrooptic active crystal according to the applied electrical signal from the test device. This modulated signal is transmitted to the receiver over a fiber optic cable. The light signal is then converted to an equivalent electrical signal in a receiver unit, and transferred to an oscilloscope. Here, no electrical power supply is needed for the sensor head. The optical waves which have been fed into the sensor head are modulated by means of a voltage controlled integrated optic interferometer device. The signal is transmitted analogously throughout the entire system. Moreover, all the components of the sensor head are housed in a metallic shielded package which is generally sealed.
This invention provides an interference-free measurement of electrical signals in connection with an oscilloscope, and also in environments with significant electromagnetic interference. By sending out the signal over a fiber optic cable and supplying the energy to the sensor head by means of unmodulated light, electrical signals can be measured without any problems for different reference potentials. These reference potentials can then also change with very high voltage pulse rates, without leading to distortion of the signal. As the sensor head doesn't need an electrical auxiliary power supply, the measurement time is unlimited. Furthermore, the design of the sensor head can be kept to a minimum, as there is no need for a battery and power supply unit.
Due to the fact that no active electronic components (amplifier, transistors, . . .) are used in the sensor head, the interference immunity of the setup has been greatly improved. The signals can be sent out over very long distances, without any problems or interference. This also allows safe, accurate and interference-free tests for high-voltage systems. The formation of ground loops in the test setup is avoided by the grounded separated design of the sensor head, and the transmission of the signal by means of the fiber optic cable. The closed metallic shield of the sensor head and the signal transfer over the fiber optic cable also allow interference-free measurements, even under the influence of extremely strong electromagnetical stray fields. The inventive setup allows for analog and digital signals, to be measured so that the setup can be used universally for oscilloscope measurement technology.
Due to the chosen analog transmission process, there is a high transfer bandwidth, and there is the possibility of measuring and transmitting the shortest pulses. The drive level or impedance of the measurement object is very small due to the fact that the drive of the fiber optic sensor is nearly powerless (purely capacitive). Using an integrated-optical modulator based on a voltage controlled interferometer device has the advantage that the control voltages needed for modulation are very small. This way, preamplifiers to adopt the signal to the sensor are no longer needed. Higher test voltages can be adapted using a resistive divider in case this is required.


REFERENCES:
patent: 5267336 (1993-11-01), Sriram et al.
patent: 5465043 (1995-11-01), Sakai
patent: 6388434 (2002-05-01), Davidson et al.
patent: 6507014 (2003-01-01), Ito et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oscilloscope probe with fiber optic sensor for measuring... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oscilloscope probe with fiber optic sensor for measuring..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oscilloscope probe with fiber optic sensor for measuring... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3106932

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.