Oscillating element that can be piezoelectrically excited

Oscillators – Electromechanical resonator – Crystal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S29000R, C310S338000, C340S618000

Reexamination Certificate

active

06545556

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an oscillating element that can be piezoelectrically excited. Oscillating elements of this kind are particularly employed in level sensors installed in, e.g., a container for a flowing or fluidizable medium, particularly a liquid. Depending on the level of the liquid, the oscillating elements may or may not be in contact with the liquid. The oscillating frequency of the oscillating elements is affected by contact with the liquid.
BACKGROUND OF THE INVENTION
Oscillating elements for level sensors are known in different designs. Generally they comprise a diaphragm that oscillates and that supports the oscillating bodies provided for contact with the liquid being measured, as well as a stack of peizoelectric elements, whose electrically induced expansion and contraction are transferred by a tie bolt to the diaphragm and induce oscillations in both the diaphragm and the oscillating bodies.
An initial example for this kind of oscillating element is described in EP 0 810 423 A2. In this known oscillating element the tie bolt is welded to the oscillating diaphragm and rises through a base plate that is positioned in fixed fashion at a distance from the diaphragm. Concentrically positioned on the base plate and around the tie bolt is a stack of ring-shaped piezoelements which are separated by insulating disks. The upper stack closure is formed by a rigid pressure disk, and pushing against this disk is a screw element which is screwed to the upper end of the tie bolt. Oscillation is induced and measured with the same piezoelements; signal guidance to the stack of piezoelements is performed by two electrical lines.
A second known oscillating element is described in WO 92/21945. In this oscillating element the base plate known from EP 0 810 423 A2 is replaced by a pressure disk which forms a lower closing for the stack of piezoelements and which presses against a shoulder that is formed in circular fashion on a rim area of the diaphragm. Oscillation is induced and measured by separate piezoelements; at least three electrical lines are employed.
Another oscillating element is known from EP 0 875 742 A1. Here also a pressure ring seals the stack of piezoelements on the lower side facing the diaphragm. Instead of a shoulder, this pressure ring presses against a pressure pin formed to the diaphragm.
A problem that arises in the construction of oscillating elements for level measurement rests in the fact that a particularly rigid coupling between the piezoelements and the diaphragm, or the oscillating bodies molded to it, is necessary in order for dampening of the movement of the oscillating body by the medium being measured to reliably react on the piezoelement and to be electrically detected there. Among the known oscillating elements, this requirement is successfully fulfilled when the oscillating bodies, which are usually formed of fork prongs, have a length of about 100 mm. With a reduction of the prong length to, e.g., 40 mm this requirement is no longer adequately fulfilled.
The cause of this problem is thought to rest in the fact that shortening the prongs leads to an increase in the resonance frequency of the oscillating element. In the case under consideration here, which involves a shortening of from about 100 to about 40 mm, there is an approximate three-fold increase in the oscillating frequency. This results in a distinct uncoupling between the piezoelectric elements, which drive the oscillation, and the fork prongs, with the consequence that even when the fork prongs are completely blocked the drive remains mechanically capable of oscillation, though at a reduced level. A sufficiently rigid coupling between the drive and the fork prongs, however, is a necessary precondition for the electrical measurement of the fork's resonating frequency as based on the electrical signals that are induced by the oscillation of the fork in the piezoelements and that can be measured in the drive unit—electrical signals that here are referred to as detection signals. As long as the oscillating bodies are surrounded by air and are thus slightly dampened in any case, their oscillating movement is sufficiently true to the stimulation provided by the piezoelectric elements. However, as soon as they come into contact with the container material to be measured, and their oscillation is thereby further dampened, increased deviations between the detection signal and the actual resonance of the system of oscillating bodies and diaphragm arise, and undesirable harmonic wave oscillations occur. If the material that fills the container exceeds a certain viscosity value, the result will ultimately be an excessive uncoupling of the behavior of the oscillating bodies from the stimulation provided by the piezoelements, and thus a complete loss of function of the level sensor.
Another problem with the conventional oscillating element is the large number of single parts that are required. This affects not only the manufacturing costs of the oscillating element, it also reduces the latter's reliability. Particularly when the oscillating element is used at high temperatures, the individual parts are exposed to increased mechanical loads, which may result in the premature aging of the components.
Another problem with conventional oscillating elements is that mechanical tolerances determined by the manufacturing process result in the oscillating element having an electrical/mechanical efficiency that is dependent on the rotational position of the piezoelement relative to the tie bolt. In order to achieve the maximum mechanical oscillating amplitude determined by the design for a given excitation amplitude, it is therefore necessary in mounting the stack of piezoelements around the tie bolt to continue rotation in stages until the most favorable position is located, in which the stack of piezoelements then remains locked.
SUMMARY OF THE INVENTION
The goal of the invention is to specify a piezoelectrically excitable oscillating element that is better suited to miniaturization than the conventional oscillating elements. Other advantages of the oscillating element according to the invention are its small number of parts and the associated reduction in manufacturing costs.
In an oscillating element with an oscillating diaphragm, a stack of piezoelectric elements, and a tie bolt connected to the diaphragm for pressing the piezoelectric elements against the diaphragm this goal is achieved in that the tie bolt and the diaphragm are designed as a single piece. In this way a mechanical connection that is considerably more reliable and less susceptible to material fatigue is created between the piezeoelements and the oscillating bodies.
This single-piece connection can be obtained in particular by producing the diaphragm and the tie bolt from a single piece by a treatment that reduces the material of the piece, particularly by machining.
In another solution to the problem, which nonetheless can be combined with the above-indicated solution in a preferred embodiment, the stack contains two piezoelectric elements between a pressure ring and support ring that touches the diaphragm; the pressure ring and the support ring can be connected with an initial drive potential; and an electrode positioned between the piezoelectric elements can be connected to a second drive potential. Limiting the system to two piezoelectric elements leads to a reduction in the structural height of the oscillating element and thus to an increased rigidity of its connection to the oscillating bodies; at the same time, it is possible—because the first drive potential must only be applied to one point on the stack—to omit a temperature-sensitive guide plate on the oscillating element, with the result that the oscillating element is suitable for application temperatures of up to 200° C.
An electrically conductive connection between the pressure ring and the support ring can be produced in simple fashion by means of the tie bolt. A simplified replacement capability for the oscillating element is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oscillating element that can be piezoelectrically excited does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oscillating element that can be piezoelectrically excited, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oscillating element that can be piezoelectrically excited will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3012570

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.