Orthopedic trial prosthesis and saw guide instrument

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06395004

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to implantable orthopedic prostheses and more particularly to instruments and surgical techniques for implanting orthopedic prostheses.
2. Background Art
Implantable orthopedic prostheses, in their most common form, comprise man-made replacements for the ends and articulating surfaces of the bones of the skeleton. Such prostheses are implanted to repair or reconstruct all or part of an articulating skeletal joint that is functioning abnormally due to disease, trauma, or congenital defect. Among the various articulating skeletal joints of the human body that are eligible to be fitted with implantable orthopedic prostheses, the hip joint and the knee joint are the ones most often treated with such prostheses. One reason for this is that the hip and knee joints are major weight bearing joints and degenerate more quickly than other joints in the event of abnormality. Another reason is that the hip and knee joints play a critical role in ambulation and quality of life, resulting in a greater demand for surgical correction of abnormalities.
With particular regard to the hip joint, the commonly employed orthopedic prostheses include components that fall within one of three principle categories: femoral stems, femoral heads and acetabular cups. A so-called “total” hip prosthesis includes components from each of those categories. The femoral stem replaces the proximal end of the femur and includes a distal stem that is received within the medullary canal at the proximal end of the femur. The femoral head replaces the natural head and articulating surface of the femur. The acetabular cup replaces the natural socket and articulating surface of the acetabulum of the pelvis. In some designs, the stem and head are an integral, unitary component, but more often the stem and head are separate modular components designed to be assembled together to suit the anatomical needs of the patient. In some other designs, including the so-called “bipolar” hip prostheses, only the femoral part of the hip joint is replaced and the artificial femoral head articulates directly against the natural acetabulum. In the case of the bipolar hip prosthesis, there is a second inner head that articulates within the outer head, hence the origin of the term “bipolar.”
Considering specifically the femoral stem component of implantable orthopedic prostheses, various configurations are available for use. The configuration that is most appropriate for a particular patient is often dictated by the condition of the bone of the proximal femur at the time the surgery is contemplated. Considered broadly, hip stems can be classified as either primary or revision stems, although some designs admit of use in either class. In general, primary hip stems are used for the first implantation in a particular femur, as they are the most bone-conserving by design. Likewise, the design of the primary stem is based on the assumption that the bone of the proximal femur is generally sound, except for the neck and the articulating surface of the head. Consequently, a primary stem may not be suitable where structurally critical bone of the proximal femur is unsound, or missing. Revision stems are designed for use in second and subsequent implantations in a particular femur, where there has been some loss of bone from prior surgery or from failure of a prior implant. In some patients, a revision stem would be the stem of choice for a first implantation where the bone of the proximal femur is unusually compromised.
One hip stem design, known as the calcar-replacing hip stem, typically employed as a revision stem, is particularly suited for use where the calcar femorale, a bony spur springing from the underside of the neck of the femur above and anterior to the lesser trochanter, is missing or compromised. The calcar femorale is important in providing structural strength to the proximal femur, and its absence contraindicates the use of a conventional primary or revision stem that depends on the calcar for support. The calcar-replacing hip stem includes a substantially horizontal flange designed to engage a horizontal proximal surface of the proximal femur that is created by resecting the femur below the natural location of the calcar femorale. Typically, the proximal femur is resected by two orthogonal planar osteotomies, one that is horizontal and extends from the medial side of the femur to about half-way to the lateral side, and one that is vertical and extends from the proximal extent of the femur down to the horizontal osteotomy. Consequently, a right-angular quadrant of the femur, including the neck and head, is resected. The calcar-replacing hip stem also includes a substantially vertical flange that engages the vertical resected surface of the proximal femur.
The current state of the art of fitting a calcar-replacing femoral stem prosthesis to a femur involves performing the horizontal and vertical osteotomies with a powered reciprocating saw blade, but in a freehand manner that depends for its success on the skill and technique of the implanting surgeon in making those osteotomies at the correct locations and in the proper planes. Any error in performing the osteotomies can result in the flanges of the calcar-replacing prosthesis not engaging the resected bony surfaces properly, or in the prosthesis being placed too low or too proud, or too lateral or too medial, with a consequent failure to restore the natural anatomic dimensions of the femur. It is desirable that the medullary canal be reamed to create a bony socket that closely conforms to the contour of the distal stem of the prosthesis. Ideally, when the prosthesis is inserted into the reamed medullary canal, the horizontal flange should engage the transversely resected horizontal bony surface approximately simultaneously with the distal stem becoming seated in engagement with the bony socket. Unless the relationship between the depth of the reamed socket and the location of the horizontal osteotomy is well-controlled, that ideal simultaneous engagement may not be achieved, resulting in the prosthesis-to-bone fit being less than optimum overall.
It would be desirable to provide an instrument system that provides for precise control and repeatability of the various reaming and osteotomy steps involved in implanting a calcar-replacing hip stem prosthesis to improve the ultimate fit of the prosthesis to the femur and to improve the outcome for the patient. Such desirable ends are achieved by the present invention, a preferred embodiment of which is described herein.
SUMMARY OF THE INVENTION
According to one aspect of the present invention, a trial prosthesis and saw guide instrument system is provided for use in orthopedic surgery to implant an orthopedic calcar-replacing femoral hip prosthesis. The instrument system comprises a trial femoral hip stem and trial flange, for temporary insertion at a resected proximal end of a femur within a reamed intramedulary canal of the femur. The trial femoral hip stem includes a longitudinal axis, a proximal portion and a distal portion, and a neck portion for temporarily receiving a trial femoral head. The proximal portion includes an elongate saw guide slot, substantially parallel to the longitudinal axis. The trial flange is configured for temporary insertion within the saw guide slot to simulate a vertical flange of a calcar-replacing femoral hip stem prosthesis.
According to another aspect of the present invention, an osteotomy guide and saw guide instrument system is provided for use in orthopedic surgery to implant an orthopedic calcar-replacing femoral hip prosthesis. The instrument system includes an elongate rotary reamer for reaming a socket in the medullary canal to receive the hip prosthesis, and an elongate driver adapter configured at a proximal end thereof for connection to a powered rotary driver and configured at a distal end thereof for connection to the elongate rotary reamer. An osteotomy guide has means for connection to the elongate driver

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Orthopedic trial prosthesis and saw guide instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Orthopedic trial prosthesis and saw guide instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Orthopedic trial prosthesis and saw guide instrument will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2905853

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.