Dentistry – Orthodontics – By mouthpiece-type retainer
Reexamination Certificate
2002-04-03
2004-03-09
Lewis, Ralph A. (Department: 3732)
Dentistry
Orthodontics
By mouthpiece-type retainer
C433S018000
Reexamination Certificate
active
06702575
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of orthodontic appliances. More specifically, the present invention discloses a method and apparatus of orthodontic treatment in which any of a variety of orthodontic aligner auxiliaries can be used in conjunction with a removable aligner for orthodontic treatment.
2. Statement of the Problem
In the field of orthodontics, treatment is currently accomplished through the use of a wide range of hardware options available to the practitioner. Taken to a simplest form, these options can be categorized into two groups. The first group is conventional braces, which are based on tooth-mounted mechanical systems intended to reposition a patient's teeth. The other group includes various types of orthopedic appliances that act to elicit a more physiological or skeletal response. The orthopedic approach is directed not only to repositioning of an orthodontic patient's teeth, but also to attaining a corrected and stable balance between the jaws, the facial musculature and the bony structures of the face. In practice, orthodontic correction is typically accomplished through a combination of these two approaches where first a patient's skeletal relationships will be brought into a more harmonious and corrected balance, and once corrected in that manner, the teeth will then be moved into desired final aesthetic positions and desired relationships using conventional braces.
Many auxiliary treatment systems have been developed that generally serve to augment or support the two basic approaches described above. Such auxiliary systems include devices known as retainers, face bows, holding arches, reverse-pull headgear, transpalatal arches, rapid palatal expanders, lingual arch developers, mandibular advancers, lip bumpers and the like. In most cases, such auxiliary treatment devices serve progressively during specific sub-phases of treatment and serve to expedite one treatment objective that must be accomplished before another can begin.
As the science of orthodontic treatment and the related armamentarium has matured, some particularly skilled orthodontists have become so adept at using such auxiliary support systems that their use has been expanded to become a central means of a complete treatment methodology. Many such auxiliary support systems have been commercialized and thus provide the orthodontic profession with many treatment tools, methods and options usefully bolstering treatment methods using conventional “braces” and the orthopedic approaches.
One such orthodontic auxiliary support system to which the present invention is directed is broadly known in orthodontics as the orthodontic tooth positioner. Orthodontic tooth positioners can be characterized as being generally U-shaped, conforming to the shape of the dental arches and formed of a soft, flexible or resilient material. A trough is formed along the generally U-shaped configuration of a tooth positioner, which consists of multiple depressions, each depression being negatively formed to intimately contact and positively accept a corresponding tooth. When placed in the patient's mouth, a tooth positioner typically spans and intimately accepts all of the teeth of an upper or lower arch of a patient and in doing so typically covers the entire crown of the teeth. Tooth positioners usually do not extend beyond the gingival margin of the teeth and therefore do not typically contact the adjacent soft tissue or the gums.
Generally speaking, positioners used in the past tended to be integral, i.e. formed from a single mass of natural vulcanized rubber material containing two troughs; one of which is upwardly facing for engaging the upper teeth and the other oriented downward for engaging the lower teeth. More recently, tooth positioners are more commonly formed as a set of two separate positioners, with one of a set being adapted to the upper arch and the other independently adapted to the lower arch. Other types of special-purpose positioners are sometimes formed to engage just on side or one quadrant of an arch.
The orthodontic tooth positioner, and methods for forming them were first disclosed in the orthodontic literature in 1946 by H. D. Kesling, a well-known and influential orthodontist of that day. Based on the work of Kesling, positioner-based therapy methods were developed and commercial support for those doctors using positioners was provided by orthodontic laboratories. Kesling published a number of articles extolling the virtues of tooth positioners, describing them as providing effective functional tooth-moving forces without any interference from bands, brackets or wires.
As stated above, both today and in the past, orthodontists choosing to treat patients with tooth positioners typically rely on the services of an orthodontic laboratory to form positioners for their patients. Orthodontic laboratories provide service for the custom-fabrication of a tooth positioner for an individual patient according to a treatment plan and a prescription provided by the attending orthodontist or dentist. For this process, a poured and cured stone replica of a patient's initial malocclusion is provided by the doctor for the laboratory's use.
The dental technicians within a laboratory first modify the stone model by cutting the mal-positioned teeth free of the model and the adjacent teeth. Next, a technician repositions the teeth on the model semi-rigidly into desired, ideal positions as specified by the doctor and as determined by the doctor's diagnosis and subsequent treatment plan. After the stone model has been modified or “corrected” in this manner, the model will be positioned within a tooth positioner-forming machine where through the simultaneous use of air pressure, vacuum and heat, a sheet of thermo-formable vinyl or other rubber-like or thermo-formable elastomeric material is “sucked-down” over the stone model(s). After forming the positioner in this manner, excess material is trimmed from the positioner, and it is sent back to the orthodontist's practice and an appointment is scheduled to seat the positioner in the mouth of the patient.
In the past, the process of forming a tooth positioner has been much more labor intensive. Rather than “sucking down” a sheet of thermo-formable material, it was necessary to first create a mold and then cast thermosetting materials or other materials that required heat, pressure and time to cure.
As can be appreciated, a completed laboratory-produced tooth positioner reflects the teeth in improved positions and orientations compared to the actual positions and orientations of the teeth at the beginning of a patient's treatment. When a new positioner is first placed on the patient's mal-occluded teeth, each tooth will tend to distort and load the elastomeric material adjacent to each tooth impression formed in the positioner. With the positioner fully seated on the patient's arches, the material adjacent to each tooth will become elastically loaded, and within the elastomeric material of the positioner, energy will have been stored. Essentially, it is the slow dissipation of that stored energy, over time, that provides the gentle, continuous biologically effective force to which the bone underlying the tooth will respond, and the tooth will move into positions according to the gentle urging of the positioner.
As described, positioner-based treatment as first introduced by Kesling in the late 1940's. The positioners as taught by Kesling were based on relatively inelastic and relatively hard natural rubber materials of the day and therefore such positioners exhibited insufficient elasticity to accomplish primary tooth moving objectives. Such appliances were generally limited to effecting minor tooth movement near the end of treatment and for a period of time they could also be used as a post-treatment retainer of sorts. In order for the tooth positioners used by Kesling to serve as the primary tooth moving treatment modality, the labora
Dorr, Carson, Sloan, Birney & Kramer, P.C.
Lewis Ralph A.
LandOfFree
Orthodontic aligner auxiliary system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Orthodontic aligner auxiliary system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Orthodontic aligner auxiliary system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3185421