Oriented magnetic medium on a nonmetallic substrate

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Physical dimension specified

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S336000, C428S690000, C428S690000, C428S690000, C428S900000, C427S128000, C427S129000, C427S130000

Reexamination Certificate

active

06670032

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a disk used for magnetic recording in a disk drive and more specifically to an oriented magnetic medium on a non-metallic substrate.
2. Description of the Background Art
Disk drives using magnetic recording of digital information comprise most of the information storage in contemporary computer systems. Disk drives have at least one rotating disk with discrete concentric tracks of data. There is at least one recording head typically comprising a separate write element and read element for writing and reading the data on the tracks. The recording head is attached to a slider and the slider is attached to a suspension. The combination of the recording head, slider and suspension is called a head gimbal assembly. In addition, there is an actuator which positions the recording head over the specific track of interest. The actuator first rotates to seek the track of interest and after positioning the recording head over that track maintains the recording head in close registration to that track.
The disk in a disk drive comprises a substrate and a magnetic layer on the substrate for magnetic recording. Substrates are typically either metal or glass. Metal substrates are typically made from an alloy of aluminum and magnesium. Glass substrates can be made with standard sodium borosilicate glass, harder grades of glass, or known glass composites. Substrates may also be made from silicon or a ceramic material. Silicon and ceramic disks offer many of the same technical advantages as glass but are generally more expensive. The magnetic layer is usually a cobalt based alloy suitable for magnetic recording. Disks generally have other layers in addition to the magnetic layer. There is usually a carbon based overcoat deposited on the magnetic layer for durability. Also there may be other layers disposed between the substrate and the magnetic layer to promote better adhesion or to improve the magnetic properties of the recording layer. One or more underlayers deposited for the purpose of influencing the crystalline growth of the magnetic layer will be called herein a magnetic underlayer. The magnetic underlayer is generally itself non-magnetic and merely influences the properties of the magnetic recording layer.
When using metal substrates it is customary to electrolessly plate from a solution an underlayer of NiP with a thickness of several microns (typically 3-5 &mgr;m) to cover some of the defects usually encountered in the substrate. A relatively thick layer of NiP is known to accept a mechanical texture. The composition of the NiP layer on a metal substrate using a deposition from solution is typically about 11% P by weight. This deposition method used with metal substrates produces the amorphous form of NiP. The crystalline form of NiP is magnetic and, if present, would degrade the magnetic recording properties of the disk.
Glass substrates have several advantages over metal substrates. Generally the surface of a glass substrate is smoother than the surface of a metal substrate. This is a significant advantage as the spacing between the disk and recording head must decrease as the areal density increases. A second advantage is that glass is a harder material than aluminum and therefore is more resistant to damage arising from inadvertent contact between the slider and the disk. A third advantage of using glass substrates is that glass substrates are stiffer than metal substrates thus allowing glass substrates to be used at higher rotation speeds. Another advantage of using glass for substrates is that glass has fewer detrimental effects during process temperature excursions compared with metal substrates. These advantages are generally known in the art.
For longitudinal media, orientation from crystallographic effects arises from constraining the c-axis of the magnetic film to lie in the plane of the magnetic layer. This orientation is normally isotropic within the plane of the magnetic recording layer. If the magnetic layer is deposited on a surface which has been textured in a preferentially circumferential direction, then the orientation will also be preferentially circumferential for layers of practical interest. In this case the orientation will no longer be isotropic within the plane of the magnetic recording layer. The orientation ratio (OR) refers to the ratio of the product of the remanent magnetization and the magnetic film thickness (Mrt) when measured in the circumferential direction relative to the Mrt in the radial direction. An OR of 1.0 indicates that the Mrt is the same when measured both circumferentially and radially, and the media is said to be two dimensionally isotropic in the film plane. A disk with an OR greater than 1.0 generally has superior magnetic performance compared to isotropic disks. Circumferential in-plane orientation is commonly induced in recording layers on metal substrates by mechanically texturing the substrate or, more commonly, the NiP underlayer. Mechanical texturing on metal substrates leaves small elongated indentations or small, shallow scratches in a generally circumferential direction.
Glass substrates are much more difficult to mechanically texture. Because glass is relatively brittle, texturing glass directly generally results in fracture pits, gouges, irregular scratches and other unacceptable artifacts. It is known to photolithographically produce grooves in a glass substrate, however this method is expensive and more difficult than mechanical texturing. Also the feature size available from a photolithographic process is generally larger than desired. As a consequence, glass substrates are rarely textured and the magnetic layers on glass substrates rarely have in-plane circumferential orientation.
There is needed an improved magnetic medium having magnetic orientation on a glass substrate and a practical method of making the medium with circumferential orientation.
SUMMARY OF THE INVENTION
An embodiment of this invention provides a disk which has an in-plane circumferential oriented recording layer on a glass or ceramic substrate and a method for making the disk. The disk representing this embodiment of the invention combines the mechanical advantages of a glass substrate with the improved magnetic performance of an oriented magnetic medium.
In one embodiment the disk has a nonmetallic substrate, a texture stop layer formed on the substrate, a textured layer formed on the texture stop layer, a magnetic layer formed over the textured underlayer, and an overcoat formed on the magnetic layer. The textured layer is textured in a substantially circumferential direction. The disk can have a magnetic underlayer disposed between the magnetic layer and the textured layer. The substrate of the disk is generally formed from glass or other suitable nonmetallic substrate material. The texture stop layer functions to prevent damage to the nonmetallic substrate. Generally the texture stop layer is made from a suitable, relatively hard material such as chromium, titanium, tantalum, tungsten, boron nitride, tantalum nitride, vanadium, niobium, molybdenum, carbon, zirconium, boron carbide, silicon carbide, titanium carbide, or titanium nitride. Generally the textured layer is made of a texturable material such as aluminum, copper, NiP, ruthenium, palladium, platinum, tin, lead, silver, or gold. This texturable layer is textured (preferably with a mechanical texturing method) before the magnetic underlayer and magnetic layer are deposited onto the disk.
In another embodiment of the invention a disk with a texture stop layer and a textured layer is utilized in a disk drive.
Other aspects and advantages of the present invention will become apparent from the following detailed description along with the drawings, showing by way of examples the principles of the invention.


REFERENCES:
patent: 5084152 (1992-01-01), Lin et al.
patent: 5384175 (1995-01-01), Kojima et al.
patent: 5536585 (1996-07-01), Futamoto et al.
patent: 5685958 (1997-11-01), Futamoto et al.
patent:

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oriented magnetic medium on a nonmetallic substrate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oriented magnetic medium on a nonmetallic substrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oriented magnetic medium on a nonmetallic substrate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3180649

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.