Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From silicon reactant having at least one...
Reexamination Certificate
2000-03-28
2001-09-25
Moore, Margaret G. (Department: 1712)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From silicon reactant having at least one...
C528S033000, C528S031000, C528S037000, C528S021000, C528S023000, C528S012000, C556S445000, C556S451000
Reexamination Certificate
active
06294634
ABSTRACT:
BACKGROUND OF THE INVENTION
While Fish in Makromol.
Chem., Macromol. Symp
. 32, 241-253, (1990) in an article entitled “Anionic Ring Opening Polymerization of Cyclotetrasiloxanes with Large Substituents” suggests preparing organosilicon compositions by reacting octamethylcyclotetrasiloxane with either (i) a cyclosiloxane containing a higher carbon atom containing group, or (ii) a cyclosiloxane containing an oxyalkylene segment, Fish does not suggest preparing organosilicon compositions by reacting octamethylcyclotetrasiloxane with (i) a cyclosiloxane containing a higher carbon atom containing group and (ii) a cyclosiloxane containing an oxyalkylene segment.
Nor does Fish suggest preparing organosilicon compositions by reacting methylhydrogencyclosiloxanes with (i) cyclosiloxanes containing a higher carbon atom containing group and (ii) cyclosiloxanes containing an oxyalkylene segment.
Fish also does not suggest preparing organosilicon compositions by reacting octamethylcyclotetrasiloxane with (i) a copolymeric cyclosiloxane containing a higher carbon atom containing group, (ii) a copolymeric cyclosiloxane containing an oxyalkylene segment, or (iii) a copolymeric cyclosiloxane containing a higher carbon atom containing group, and a copolymeric cyclosiloxane containing an oxyalkylene segment.
BRIEF SUMMARY OF THE INVENTION
This invention relates to a method of preparing certain organosilicon compositions by heating various mixtures of (i) dimethylcyclosiloxanes or methylhydrogencyclosiloxanes, (ii) homopolymeric and copolymeric cyclosiloxanes containing a C5 or more, preferably a C8 or more, carbon atom containing group, and (iii) homopolymeric and copolymeric cyclosiloxanes containing an oxyalkylene segment, in the presence of a catalyst, at a temperature and for a time sufficient to cause polymerization of cyclosiloxanes (i) to (iii) to the desired organosilicon composition.
Organosilicon compositions containing dimethylsiloxane units, methyl oxyalkylene siloxane units, and methyl higher alkyl siloxane units, are known in the art, as evidenced by U.S. Pat. No. 3,427,271 (Feb. 11, 1969). However, the method for preparing such compositions requires a platinum catalyst. In contrast, the method according to the present invention does not require the use of platinum, and hence it offers an advantage and benefit in opening an avenue to organosilicon compositions that contain significantly reduced levels of residual platinum or to platinum-free organosilicon compositions, for use in consumer markets in which platinum has been determined to be an undesirable constituent, i.e., in personal care applications relating to hair, skin, and underarm.
These and other features and benefits of this invention will become apparent from a consideration of the detailed description.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
Not applicable.
DETAILED DESCRIPTION OF THE INVENTION
Organosilicon compositions which can be prepared according to the method of this invention include compositions having the formula:
in which all of the groups R1 to R9 are hydrogen or an alkyl group containing 1-40 carbon atoms, preferably methyl, with the first proviso that R5 or R8 is a higher carbon atom containing group, i.e., a C5 or more, preferably a C8 or more group such as —(CH
2
)
7
CH
3
, —(CH
2
)
11
CH
3
, or —(CH
2
)
15
CH
3
. The higher carbon atom containing group, therefore, should contain 5-40, preferably 8-40 carbon atoms. The second proviso is that R6 or R9 is a group containing an oxyalkylene segment represented by
—C
a
H
2a
—O—(C
2
H
4
O)
b
—(C
3
H
6
O)
c
—Q.
If desired, R1 to R9 can also constitute an aryl group such as phenyl and xenyl (i.e., biphenyl); an aralkyl group such as benzyl, phenylethyl (i.e., phenethyl), and 2-phenylpropyl; an alkaryl group such as tolyl and xylyl; an haloalkyl group such as chloromethyl, 2-bromoethyl, 3-chloropropyl and 3,3,3-trifluoropropyl; an haloaryl group such as bromophenyl and chlorophenyl; an unsaturated alkenyl group such as vinyl, allyl, and hexenyl; or a substituted alkyl group such as acryloxypropyl, cyanopropyl, glycidoxypropyl, methacryloxypropyl, methoxypropyl, (methylthio)propyl, and ureidopropyl, for example; subject to the same provisos however, as noted above.
Q is a terminating radical which can be an alkyl group of one to six carbon atoms, an aryl group such as phenyl, an aralkyl group such as benzyl, an alkaryl group such as tolyl, or a trialkylsilyl group such as the trimethylsilyl group —Si(CH
3
)
3
. The value of a is 2-8, b is 4-60, and c is 0-60. The oxyalkylene segment preferably has 50-99.9 mole percent of oxyethylene units —(C
2
H
4
O)
b
, and 0.1-50 mole percent of oxypropylene units —(C
3
H
6
O)
c
—. Preferably, terminating radical Q is a methyl group; and a is three whereby the group —C
a
H
2a
— is —(CH
2
)
3
—.
In the formula, x can have a value of 1 to 1,000; y can have a value of 0 to 1,000; and z can have a value of 0 to 1,000. Preferably, x, y, and z, are each 1 to 1,000; and all of the groups R1 to R9 are methyl, except for the higher carbon atom containing group, i.e., R5 or R8, and the group containing the oxyalkylene segment, i.e., R6 or R9.
If desired, organosilicon compositions which are higher polymers containing more than x, y, and z units, and containing the same types of functionality as defined for the x, y, and z units, can be prepared according to the method of the invention.
Cyclosiloxanes used to prepare organosilicon compositions according to this invention include compositions having the formulae:
in which r and s represent an integer having a value of 3-10.
In the first cyclosiloxane composition of the formula:
R10 and R11 can be any alkyl group containing 1-40 carbon atoms, preferably methyl, with the proviso that at least R10 or R11 is a higher carbon atom containing-group, i.e., a C5 or more, preferably a C8 or more group such as —(CH
2
)
7
CH
3
, —(CH
2
)
11
CH
3
, or —(CH
2
)
15
CH
3
. The higher carbon atom containing group R10 or R11, therefore, should contain 5-40, preferably 8-40 carbon atoms. Representative cyclosiloxane compositions are 1,3,5,7-tetramethyl-1,3,5,7-tetra(1-octyl)cyclotetrasiloxane and 1,3,5,7-tetra(1-hexadecyl)-1,3,5,7-tetramethylcyclotetrasiloxane. In these compositions, r has a value of four.
If desired, R10 or R11 can also constitute an aryl group such as phenyl and xenyl (i.e., biphenyl); an aralkyl group such as benzyl, phenylethyl (i.e., phenethyl), and 2-phenylpropyl; an alkaryl group such as tolyl and xylyl; an haloalkyl group such as chloromethyl, 2-bromoethyl, 3-chloropropyl and 3,3,3-trifluoropropyl; an haloaryl group such as bromophenyl and chlorophenyl; an unsaturated alkenyl group such as vinyl, allyl, and hexenyl; or a substituted alkyl group such as acryloxypropyl, cyanopropyl, glycidoxypropyl, methacryloxypropyl, methoxypropyl, (methylthio)propyl, and ureidopropyl, for example; subject to the same proviso however, as noted above.
In the second cyclosiloxane composition of the formula:
R12 can be any alkyl group containing 1-40 carbon atoms, preferably methyl, and R13 is a group containing an oxyalkylene segment represented by —C
a
H
2a
—O—(C
2
H
4
O)
b
—(C
3
H
6
O)
c
—Q.
If desired, R12 can also constitute an aryl group such as phenyl and xenyl (i.e., biphenyl); an aralkyl group such as benzyl, phenylethyl (i.e., phenethyl), and 2-phenylpropyl; an alkaryl group such as tolyl and xylyl; an haloalkyl group such as chloromethyl, 2-bromoethyl, 3-chloropropyl and 3,3,3-trifluoropropyl; an haloaryl group such as bromophenyl and chlorophenyl; an unsaturated alkenyl group such as vinyl, allyl, and hexenyl; or a substituted alkyl group such as acryloxypropyl, cyanopropyl, glycidoxypropyl, methacryloxypropyl, methoxypropyl, (methylthio)propyl, and ureidopropyl, for example.
Q is a terminating radical which can be an alkyl group of one to six carbon atoms, an aryl group such as phenyl, an aralkyl group such as benzyl, an alkaryl group such as tolyl, or a trialkylsilyl group such as the trimethylsilyl group —Si(CH
3
)
3
. The value of a is 2-8, b is 4-60, and c is
Ferritto Michael Salvatore
Schulz, Jr. William James
Cesare James L. De
Dow Corning Corporation
Moore Margaret G.
LandOfFree
Organosilicon compositions from cyclosiloxanes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Organosilicon compositions from cyclosiloxanes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organosilicon compositions from cyclosiloxanes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2455279