Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Process of making radiation-sensitive product
Reexamination Certificate
1999-11-26
2001-01-30
Martin, Roland (Department: 1753)
Radiation imagery chemistry: process, composition, or product th
Electric or magnetic imagery, e.g., xerography,...
Process of making radiation-sensitive product
C430S132000, C430S133000, C430S134000, C427S536000
Reexamination Certificate
active
06180309
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates in general to electrophotography and, in particular, to a process for preparing electrophotographic imaging members or photoreceptors. The present invention provides a process for forming such imaging members, and imaging members formed thereby, having improved adhesion between coated layers.
2. Description of Related Art
In electrophotography, also known as Xerography, electrophotographic imaging or electrostatographic imaging, the surface of an electrophotographic plate, drum, belt or the like (imaging member or photoreceptor) containing a photoconductive insulating layer on a conductive layer is first uniformly electrostatically charged. The imaging member is then exposed to a pattern of activating electromagnetic radiation, such as light. The radiation selectively dissipates the charge on the illuminated areas of the photoconductive insulating layer while leaving behind an electrostatic latent image. This electrostatic latent image may then be developed to form a visible image by depositing oppositely charged particles on the surface of the photoconductive insulating layer. The resulting visible image may then be transferred from the imaging member directly or indirectly (such as by a transfer or other member) to a print substrate, such as transparency or paper. The imaging process may be repeated many times with reusable imaging members.
An electrophotographic imaging member may be provided in a number of forms. For example, the imaging member may be a homogeneous layer of a single material such as vitreous selenium or it may be a composite layer containing a photoconductor and another material. In addition, the imaging member may be layered. Current layered organic imaging members generally have at least a substrate layer and two active layers. These active layers generally include (1) a charge generating layer containing a light-absorbing material, and (2) a charge transport layer containing electron donor molecules. These layers can be in any order, and sometimes can be combined in a single or mixed layer. The substrate layer may be formed from a conductive material. In addition, a conductive layer can be formed on a nonconductive substrate.
The charge generating layer is capable of photogenerating charge and injecting the photogenerated charge into the charge transport layer. For example, U.S. Pat. No. 4,855,203 to Miyaka teaches charge generating layers comprising a resin dispersed pigment. Suitable pigments include photoconductive zinc oxide or cadmium sulfide and organic pigments such as phthalocyanine type pigment, a polycyclic quinone type pigment, a perylene pigment, an azo type pigment and a quinacridone type pigment. Imaging members with perylene charge generating pigments, particularly benzimidazole perylene, show superior performance with extended life.
In the charge transport layer, the electron donor molecules may be in a polymer binder. In this case, the electron donor molecules provide hole or charge transport properties, while the electrically inactive polymer binder provides mechanical properties. Alternatively, the charge transport layer can be made from a charge transporting polymer such as poly(N-vinylcarbazole), polysilylene or polyether carbonate, wherein the charge transport properties are incorporated into the mechanically strong polymer.
Imaging members may also include a charge blocking layer and/or an adhesive layer between the charge generating and the conductive layer. In addition, imaging members may contain protective overcoatings. Further, imaging members may include layers to provide special functions such as incoherent reflection of laser light, dot patterns and/or pictorial imaging or subbing layers to provide chemical sealing and/or a smooth coating surface.
Suitable coating methods used for applying the various layers in electrophotographic imaging members include dip coating, roll coating, Meyer bar coating, bead coating, curtain flow coating and vacuum deposition. Solution coating is a preferred approach because it is more economical than vacuum coating and can be used to deposit a seamless layer.
U.S. Pat. No. 4,855,203 to Miyaka teaches applying charge generating layers from coating solutions comprising a resin dispersed pigment. Miyaka discloses suitable organic solvents for preparing a coating solution of the pigments as including alcohols such as methanol, ethanol and isopropanol; ketones such as acetone, methylethyl ketone and cyclohexanone; amides such as N,N-dimethyl formamide and N,N-dimethyl acetamide; sulfoxides such as dimethyl sulfoxide; ethers such as tetrahydrofuran, dioxane and ethylene glycol monomethyl ether; esters such as methyl acetate and ethyl acetate; aliphatic halogen hydrocarbons such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride and trichloroethylene; or aromatic compounds such as benzene, toluene, xylene, ligroin, monochlorobenzene and dichlorobenzene.
U.S. Pat. No. 3,904,407 to Regensburger et al. teaches applying perylene containing charge generating layers by a vacuum coating process. Vacuum coated charge generating layers containing perylenes show a high photosensitivity. However, vacuum coating is expensive.
U.S. Pat. No. 5,521,047 to Yuh et al. is directed to a process for preparing an electrophotographic imaging member having a perylene-containing charge generating layer from solution. The process comprises forming a dispersion of a perylene pigment and a polyvinylbutyryl binder in an acetate solvent and applying the dispersion to an electrophotographic imaging member layer by solution coating. Yuh et al. teaches that perylenes form stable dispersions in acetate solvents for the purposes of application by solvent coating such as dip coating.
U.S. Pat. No. 5,891,594 to Yuh et al. discloses a process for preparing an electrophotographic imaging member having a perylene-containing charge generating layer. The process includes the steps of dispersing a perylene-containing charge generating material in a solvent comprising n-butylacetate and a second solvent having a lower boiling point than n-butylacetate, wherein the second solvent is an acetate or tetrahydrofuran, and applying the dispersion to form the charge generating layer on a substrate or underlayer of the imaging member.
Despite the presence of various methods for forming imaging member layers, it is desired in the art to increase the adhesion between successive layers in an imaging member package. In particular, in the case of endless (seamless) belts, which tend to undergo much mechanical stress, increased adhesion of the successive layers in the imaging member is particularly desired.
Various treatment methods are generally known in the art to improve adhesion between successive layers in a photoreceptor. For example, U.S. Pat. No. 5,915,514 discloses the use of plasma or corona discharge on an insulating member (substrate) of a donor roll, to increase adhesion and to provide a uniform subsequent metal coating. The disclosed process includes the step of applying corona discharge to the surface of the donor roll, prior to coating the donor roll substrate with a photo or thermally sensitive composition comprised of a polymeric material and a conductive metal nucleating agent.
Similarly, various methods such as plasma discharge and corona discharge are known and used for various purposes. For example, U.S. Pat. No. 5,635,327 discloses the use of glow discharge decomposition to apply amorphous silicon containing at least one of hydrogen and a halogen onto a conductive substrate. Likewise, U.S. Pat. No. 5,514,507 discloses using plasma discharge to form a layer having amorphous silicon germanium as a main body containing at least hydrogen, fluorine and a group III element.
SUMMARY OF THE INVENTION
The present invention is directed to a process for preparing an organic electrophotographic imaging member having at least a charge generating layer and a charge transport layer, wherein the imaging member has increased adhesion between at lea
Flanagan Robert L
Maty David J
Martin Roland
Oliff & Berridg,e PLC
Xerox Corporation
LandOfFree
Organic photoreceptor with improved adhesion between coated... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Organic photoreceptor with improved adhesion between coated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic photoreceptor with improved adhesion between coated... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2495176