Organic optoelectronic device structures

Electric lamp and discharge devices – With luminescent solid or liquid material – Solid-state type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S512000

Reexamination Certificate

active

06765351

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to organic optoelectronic devices, such as organic light emitting devices, organic photovoltaic devices and organic thin film transistors, that are protected from species in the surrounding environment.
BACKGROUND OF THE INVENTION
Organic optoelectronic devices, including circuits, such as organic light emitting diodes, organic electrochromic displays, organic photovoltaic devices and organic thin film transistors, are known in the art and are becoming increasingly important from an economic standpoint.
As a specific example, organic light emitting devices (“OLEDs”), including both polymer and small-molecule OLEDs, are potential candidates for a great variety of virtual- and direct-view type displays, such as lap-top computers, televisions, digital watches, telephones, pagers, cellular telephones, calculators and the like. Unlike inorganic semiconductor light emitting devices, organic light emitting devices are generally simple and are relatively easy and inexpensive to fabricate. Also, OLEDs readily lend themselves to applications requiring a wide variety of colors and to applications that concern large-area devices.
In general, two-dimensional OLED arrays for imaging applications are known in the art and typically include an OLED display area that contains a plurality of active regions or pixels arranged in rows and columns.
FIG. 1A
is a simplified schematic representation (cross-sectional view) of an OLED structure of the prior art. The OLED structure shown includes a single active region
15
which includes an electrode region such as anode region
12
, a light emitting region
14
over the anode region
12
, and another electrode region such as cathode region
16
over the light emitting region
14
. The active region
15
is disposed on a substrate
10
. With the aid of a sealing region
25
, the cover
20
and the substrate
10
cooperate to restrict transmission of oxygen and water vapor from an outer environment to the active pixel
15
. Traditionally, light from the light emitting layer
14
was transmitted downward through the substrate
10
. However, other OLED architectures are also known in the art, including “top-emitting” OLEDs and transparent OLEDs (or “TOLEDs”). Moreover, structures are also known in which the positions of the anode
12
and cathode
16
in
FIG. 1A
are switched as illustrated in FIG.
1
B. Such devices are sometimes referred to as “inverted OLEDs”.
Unfortunately, certain OLED structure components, such as reactive metal cathode components, are susceptible to oxygen and moisture, which exist in the ambient atmosphere and can produce deleterious effects that can severely limit the lifetime of the devices. For example, moisture and oxygen are known to increase “dark spot areas” in connection with OLED structures. The organic materials utilized in a conventional OLED structure can also be adversely affected by environmental species such as water and oxygen. Components of various other organic optoelectronic devices such as organic electrochromic displays, organic photovoltaic devices and organic thin film transistors are likewise susceptible to attack from exterior environmental species including water and oxygen.
One approach to mitigating the adverse affect of moisture and oxygen is to attach a cover to the substrate, for example, with the aid of sealing region
25
as shown in
FIGS. 1A and 1B
. The attachment of the cover is typically done under a clean, dry, inert atmosphere, and employs adhesives such as epoxy resins that can be deleterious to the OLED device. Moreover, epoxy resins suitable for sealing a cover to an OLED substrate are generally not flexible. Therefore, the use of epoxy resins is undesirable particularly where a flexible OLED (FOLED) is desired. These additional processing steps are time consuming and complex, decreasing the production efficiency and increasing the expense associated with manufacturing OLEDS.
It has also been proposed, for example, in U.S. Pat. Nos. 6,146,225 and 6,268,695, both of which are incorporated herein in their entireties, to form a multi-layer coating (also referred to herein as a composite barrier layer) directly onto an OLED device by use of a polymer multilayer process (or “PML” process). The PML process is disclosed, for example, in U.S. Pat. Nos. 4,842,893, 4,954,371, and 5,260,095 and 6,224,948, all of which are incorporated herein in their entireties. The PML process is advantageous because it is a vacuum compatible process which produces a conformal coating that does not require the separate attachment of a preformed multi-layer cover, as discussed above. Moreover, the PML process produces a composite barrier layer with good resistance to moisture and oxygen penetration.
However, when used to directly deposit a composite barrier layer on an OLED device, the PML process itself can cause damage to the active region of the OLED. For example, the PML process commonly involves the use of acrylic monomers that are polymerized in situ on a substrate by ultraviolet radiation and heat. It is believed that when the PML process is employed to form a multi-layer protective layer on an OLED, diffusion or seepage of the acrylic monomer into the layers in the active region of the OLED, i.e., the cathode layer, light emitting layer(s) and anode layer, causes damage thereto. Moreover, the heat employed during the PML process may also cause damage to one or more of the layers in the active region of the OLED. Damage to the OLED is manifested in, for example, reduced opto-electronic performance characteristics such as brightness, operating voltage, and light emission efficiency as is known in the art.
SUMMARY OF THE INVENTION
In accordance with the foregoing, it would be desirable to provide an organic device, such as an OLED, organic electrochromic display, organic photovoltaic device or organic thin film transistor, that is protected from oxygen and moisture through the use of a composite barrier layer that provides a conformal coating for the device fabricated on a substrate. It would further be desirable to provide a structure and process for such an organic device, wherein damage to the device that is ordinarily caused by the direct application of a composite barrier layer onto the organic device is reduced or eliminated. The above and other challenges are addressed by the present invention.
According to an embodiment of the present invention, there is provided a protected organic device comprising (a) a substrate; (b) an active region positioned on the substrate; (c) a first protective layer disposed over the active region; and (d) a second protective layer disposed over the first protective layer, wherein the second protective layer comprises an alternating series of two or more first polymeric sub-layers and two or more first high density sub-layers. In a preferred embodiment, the organic optoelectronic device comprises an OLED wherein the active region comprises an anode layer, a cathode layer and a light-emitting layer disposed between the anode layer and the cathode layer
In another aspect, the present invention is directed to a method for providing such a protected organic optoelectronic device, wherein the method comprises vacuum depositing a conformal composite coating directly onto an organic optoelectronic device, such as an OLED, constructed on a substrate.
In some preferred embodiments of the present invention, the first protective layer is a material selected from the group consisting of organometallic materials, inorganic materials and polymeric materials. In a particularly preferred embodiment of the present invention, the first protective layer is an organometallic material such as a phthalocyanine or a porphyrin. Metal phthalocyanines, such as copper phthalocyanine, are especially preferred.
In some preferred embodiments, the first protective layer is disposed over the active region, contacting the cathode. In other preferred embodiments, the first protective layer is disposed over the active region, contacting the anode.
In oth

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Organic optoelectronic device structures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Organic optoelectronic device structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic optoelectronic device structures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3225106

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.