Organic material based uniprill fertilizer

Chemistry: fertilizers – Processes and products – Organic material-containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C071S061000, C071S063000, C071S064030

Reexamination Certificate

active

06461399

ABSTRACT:

TECHNICAL FIELD
The invention relates generally to a method of treating and grinding raw organic matter, such as manures and straws, to create a complete and balanced plant food. More specifically, the invention relates to the sequential treatment of an organic material being prepared through a grinding process, by mixing it with a calcium source followed by a slurry of plant nutrients. This initial treatment is followed by granulation and the addition of supplemental nutrients to form a homogenous, “uniprill” fertilizer product.
BACKGROUND OF THE INVENTION
Nature has perfected the recycling of elements necessary for sustained plant growth. Sixteen elements are known to be essential for ideal genetic expression in plants, and for maximizing plant growth. These elements are generally considered to be:
Carbon
Hydrogen
Oxygen
Nitrogen
Phosphorus
Potassium
Calcium
Magnesium
Sulfur
Boron
Chlorine
Copper
Iron
Manganese
Molybdenum
Zinc
The earth is essentially a closed system in which these sixteen elements are recycled or moved from one location to another (for example, from the top soil to the ocean or atmosphere). In nature, we observe a precise method of recycling these critical elements, and it is necessary for man to work in harmony with this method. When we disrupt the natural cycle, we place our sources of food, fiber, and energy in jeopardy.
Humanity has in some ways short-circuited nature with large scale agriculture. Soil, which provides the nutrients required to grow the healthy crops on which we depend, is quickly depleted. In our attempt to industrialize and scale-up farming practices, we bypass nature and plant a rapid succession of nutrient sapping crops which cannot replenish the soil. To supplement or even supplant nature, farmers must turn to industry to provide fertilizers to keep the soil infused with the sixteen required nutrients and vital organic materials.
Organic materials are by-products of plants or animals, and are relied upon as excellent sources of fertilizer feedstock. Several U.S. patents relate to the production of fertilizers from such organic materials. U.S. Pat. No. 4,743,287 to Robinson teaches a method that claims to create “humic acid molecules.” Humic acids are structurally complex organic acids that provide superior binding sites for ionic nutrients. These ionic nutrients are readily held in the soil by the humic acids, for exchange to and assimilation by plants, as needed. Robinson suggests that such humic acids, the “storage molecule of plant nutrients,” can be formed within minutes using an acid and a base combined in rapid sequence in the presence of organic matter and soluble salt forms of fertilizer.
Page 4, line 20 of Robinson '287 describes a fertilizer product containing 52% humic acid, 8.32% nitrogen, 6.2% P
2
O
5
, and 1.09% K
2
O, manufactured by his method. Robinson states this result was accomplished in a sealed, pressurized reactor, after mixing sulfuric acid and anhydrous ammonia into the reactor, in the presence of screened organic matter and soluble salts.
The inventor of the present invention has found that the quick manufacture of quality humic acid by the method disclosed by Robinson '287 is at best difficult to repeat. Additionally, pressurized reactor systems are costly and potentially dangerous. This is especially true when anhydrous ammonia is utilized. Anhydrous ammonia is a toxic material that requires special handling, closely followed safety procedures, and strict regulatory permits and oversight. A method for manufacturing a humic acid fertilizer is needed that does not require pressurized reactor vessels or anhydrous ammonia.
Accomplishments by the inventor of the present invention in the field of fertilizer production are disclosed in U.S. Pat. No. 5,446,273, which teaches the use of anhydrous ammonia in a minimum of 40% moisture environment. However, as discussed above, anhydrous ammonia poses problems in an industrial site. Anhydrous ammonia is difficult to control and efficiently meter, and is subject to stringent emission regulations. Safety considerations lead to a dramatic increase in expenses when anhydrous ammonia is utilized. A method for producing an organic material fertilizer is needed that does not require the use of anhydrous ammonia as a raw material.
SUMMARY OF INVENTION
The present invention provides an organic-based fertilizer. The fertilizer contains all the sixteen elements needed for optimum plant heath. The fertilizer of the present invention can be manufactured in a uniprill formulation. The uniprill formulation is defined as a finely granulated product, wherein each granule substantially contains the same ingredients, in the same proportions, as the product in bulk.
The process of the invention includes sequential pre-treatment of organic matter by mixing and grinding it with a lime admixture, forming a pre-product. The lime admixture provides a source of calcium ions for the fertilizer. This pre-treatment is followed by adding a slurry of reagents and binders, followed by a mixture of acids, such as sulfuric and phosphoric. The mixture of acids can also include nitric acid or various organic acids such as citric and fulvic acid, depending on the end requirements of the fertilizer product.
The grinder action typically reduces the moisture content of the organic material by approximately 50%, by weight, each time it is passed through the grinder. This remaining moisture, in addition to the inherent moisture content of the dry additives, results in a raw product having a final moisture content of 10% to 15%, by weight. Further drying may be necessary for the uniprill product. The raw product can alternatively be liquified with a high speed blending or a micro-fluidizing process, for sprinkler or drip irrigation application.
Following the mixing of the pre-product with the mixture of acids and reagents, the resultant raw product, if dry and fine enough, is run through an agglomerator for uniprill formation, followed by a sizing operation through screens. In the event the admixture has moisture in excess of that required for agglomeration and/or the particle size needs further reduction, the product is preferably processed through a second grinder. This grinding further dries, mixes and granulates the raw product. The particle size of the finished fertilizer is reduced, resulting in a flowable and user safe uniprill product.
According to one aspect of the invention, the method of the present invention does not include a closed, pressurized reactor. Additionally, no anhydrous ammonia is utilized in the process. Additionally, no humic acid-type materials such as leonardite, humate or coal need to be added to the organic material in the initial mixture. No composting of the raw organic materials is required.
According to another aspect of the process of the present invention, the use of anhydrous ammonia is not employed in the process as a pH basic material, and instead a lime admixture is utilized with an organic material feedstock. The lime admixture and organic feedstock are combined with a micronized liquid slurry of reagents, and a combination of acids, which all takes place in a 20% to 35% moisture medium, by weight.
According to yet another aspect of the present invention, a fertilizer product with the required organic nutrients is provided by grinding, filtering, and micronizing. The micronizing of the fertilizer product has proven to be important. The maximizing of surface area per unit volume provides many features essential for a commercial product, including: greater disinfection control; an increased ability to dry and thoroughly mix the ingredients; and, an increased ability to use a variety of organic materials in one batch. The reaction of NH
3
and H
2
O, performed in a reactor, is no longer necessary to form (NH
3
)OH. This improvement requires much less water in the process and almost eliminates drying of the product.
Most conventional fertilizers are a coarse, solid phase mixture or conglomerate of component particles. These component particles in conventional fer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Organic material based uniprill fertilizer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Organic material based uniprill fertilizer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic material based uniprill fertilizer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2919903

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.