Organic light emitting materials and devices

Coherent light generators – Thin film laser

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S039000, C257S141000

Reexamination Certificate

active

06687266

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to organic light emitting devices (OLEDs), and more specifically to organic materials used in such devices.
BACKGROUND
Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be an fluorescent or phosphorescent small molecule emitter.
OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
OLED devices are generally (but not always) intended to emit light through at least one of the electrodes, and one or more transparent electrodes may be useful in an organic opto-electronic devices. For example, a transparent electrode material, such as indium tin oxide (ITO), may be used as the bottom electrode. A transparent top electrode, such as disclosed in U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, may also be used. For a device intended to emit light only through the bottom electrode, the top electrode does not need to be transparent, and may be comprised of a thick and reflective metal layer having a high electrical conductivity. Similarly, for a device intended to emit light only through the top electrode, the bottom electrode may be opaque and/or reflective. Where an electrode does not need to be transparent, using a thicker layer may provide better conductivity, and using a reflective electrode may increase the amount of light emitted through the other electrode, by reflecting light back towards the transparent electrode. Fully transparent devices may also be fabricated, where both electrodes are transparent. Side emitting OLEDs may also be fabricated, and one or both electrodes may be opaque or reflective in such devices.
As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. For example, for a device having two electrodes, the bottom electrode is the electrode closest to the substrate, and is generally the first electrode fabricated. The bottom electrode has two surfaces, a bottom surface closest to the substrate, and a top surface further away from the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in physical contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.
One application for phosphorescent emissive materials is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art. CIE coordinates are described in H. Zollinger, “Color Chemistry” VCH Publishers, 1991 and H, J, A, Dartnall, J. K. Bowmaker, and J. D. Mollon, Proc. Roy. Soc. B (London), 1983, 220, 115-130, which are incorporated by reference.
Another application for phosphorescent emissive materials is a display, full color or otherwise, that is intended to be powered by battery, such as the display of a cellular telephone or a digital camera. For such applications, power efficiency is a particularly important parameter, because efficient emission may significantly extend battery life, and/or enable the use of smaller batteries. Lighting is another application where efficiency is of particular importance, because of the sheer volume of power used for lighting applications. Efficiency is also important for many other applications. Moreover, a high efficiency may lead to a longer lifetime, because inefficient devices generally lose power to heat instead of emitting light, and heat may adversely affect device lifetime.
SUMMARY OF THE INVENTION
An organic light emitting device is provided. The device includes an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a material having the structure:
M is a metal having an atomic weight greater than 40, m is at least 1, n is at least zero, R″ is H or any substituent, X is an ancillary ligand, and A is selected from the group consisting of aryl and heteroaryl rings, and B is an aryl ring. A material including the photoactive ligand of the above material is also provided.


REFERENCES:
patent: 4769292 (1988-09-01), Tang et al.
patent: 5247190 (1993-09-01), Friend et al.
patent: 5703436 (1997-12-01), Forrest et al.
patent: 5707745 (1998-01-01), Forrest et al.
patent: 5834893 (1998-11-01), Bulovic et al.
patent: 5844363 (1998-12-01), Gu et al.
patent: 6013982 (2000-01-01), Thompson et al.
patent: 6087196 (2000-07-01), Sturm et al.
patent: 6091195 (2000-07-01), Forrest et al.
patent: 6097147 (2000-08-01), Baldo et al.
patent: 6294398 (2001-09-01), Kim et al.
patent: 6303238 (2001-10-01), Thompson et al.
patent: 6337102 (2002-01-01), Forrest et al.
patent: 6468819 (2002-10-01), Kim et al.
patent: 0 700 917 (1996-03-01), None
patent: 02/15645 (2002-02-01), None
M. A. Baldo et al., “Highly efficient phosphorescent emission from organic electroluminescent deives,”Nature,vol. 395, pp. 151-154. (1998).
M.A. Baldo et al., “Very high-efficiency green organic ligh-emitting devices based on electrophosphorescence”,Applied Physics Letters,vol. 75, No. 1, pp. 4-6 (1999).
C. Adachi et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device”,J. Appl. Phys.,vol. 90, No. 10, pp. 5048-5051 (2001).
H. J. A. Dartnall et al., “Human Visual Pigments: Microspectrophotometric Results from the Eyes ofSeven Persons,”Proc. R. Soc. Lond. B,vol. 220, pp. 115-130 (1983).
U. S. patent application Ser. No. 10/173,682 to Forrest et al.
U.S. patent application Ser. No. 09/931,948 to Lu et al.
U.S. patent application Ser. No. 10/233,470 to Shtein et al.
M.P. Singh et al., “Synthetic Utility of Catalytic Fe(III)/Fe(II) Redox Cycling Towards Fused Hetercycles: A Facile Access to Substituted Benzimidazole, Bis-benzimidazole and Imidazopyridine Derivatives,”Synthesis 2000,No. 10, pp. 1380-1390.
I

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Organic light emitting materials and devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Organic light emitting materials and devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic light emitting materials and devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3337451

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.