Organic light emitting diode display and operating method of...

Electric lamp and discharge devices: systems – Plural power supplies – Plural cathode and/or anode load device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S076000, C313S498000

Reexamination Certificate

active

06583581

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an active matrix type display device employing light emitting devices such as EL (electro-luminescence) devices or LEDs (light emitting diodes) each of which emits light by causing a driving current to flow through a light emitting thin film such as an organic semiconductor thin film, and thin film transistors for controlling the light emitting operation of the respective light emitting devices.
In recent years, as the advanced information society has come, there has been increasing demands for personal computers, portable information terminals, information communication apparatuses or complex products thereof. A thin and light-weight display device is suitable for these products, and hence the liquid crystal display device or the display device constituted by the self-light emitting type EL devices or the LED devices. The self-light emitting type display device of the latter has the features that the visibility is excellent, the visible angle characteristics are wide, it is suitable for the moving pictures since it is excellent in the high speed response, and so forth, and hence it is expected that the self-light emitting type display device will be important more and more in the information communication field in the future. In actual, recently, the rapid enhancement of the light emitting efficiency of the organic EL device or the organic LED device (hereinafter, the OLED is the general form for these devices) in which the organic material is used as the light emitting layer, and the advance of the network technology for making the image communication possible are combined to make the expectation to the OLED display device go on rising.
An example of the OLED display device according to the prior art is described in Pioneer R&D Vol. 8, No. 3, pp. 41 to 49. In accordance with this example, as shown in
FIG. 6A
, OLEDs are respectively arranged in the intersections of n anodes
61
which extend longitudinally and m cathodes
62
which extend transversely to form a simple matrix in which pixels P11, . . . , Pmn are provided. Then, each of the anode lines is driven by a constant current voltage-source
63
every cathode line to scan the cathode lines in the line-at-a-time manner. In such a way, the time division driving is carried out. Each of the pixels can be expressed in the form of an equivalent circuit shown in
FIG. 6B
, in which a parasitic capacity
65
is parasitically connected in parallel with an OLED
64
. The value of this parasitic capacity
65
is so large as to be about 20 pF in the square of 0.3 mm×0.3 mm, and hence in order to obtain the desired picture quality by the time division driving requiring the high speed as described above, it is necessary to devise the driving waveform for which the charge and discharge of the electric charges to and from the parasitic capacity are taken into consideration. In actual, in the above-mentioned prior art, there is adopted the complicated driving method wherein the timing in which all of the electrodes are grounded once is provided.
Instead of the above-mentioned simple matrix, the active matrix driving in which TFTs are provided in the pixels, respectively, has also been studied. The technology for manufacturing the OLED display device in the form of the active matrix structure to drive the same, for example, is disclosed in JP-A-8-241048 and U.S. Pat. No. 5550066, and also in WO98/36407 in which the contents of the driving voltage are described in more detail. For the typical pixels of the OLED display device of the active matrix system thus disclosed, as shown in
FIG. 7
, the light emission luminance of the OLED
76
is controlled by the active device driving circuit constituted by at least two TFT switch transistor Tsw
73
and driver transistor Tdr
74
, and one storage capacitor
75
. More specifically, the voltage corresponding to the electric charges which are stored in the storage capacitor
75
through the switching transistor
73
provides the gate voltage of the driver transistor
74
, and the OLED
76
is driven by the current which is determined on the basis of the gate voltage. However, in actual, there arises the problem that the ununiformity of the display picture quality is generated due to the ununiformity of the threshold voltage and the charge drift mobility of the driver transistor.
As for the system having the possibility of clearing the above-mentioned two problems, as shown in
FIG. 8
, the active matrix system of providing one transistor in one pixel to carry out the driving is disclosed in JP-A-4-125683.
SUMMARY OF THE INVENTION
In the one pixel-one transistor system disclosed in the above-mentioned prior art, it is possible to realize the uniform display characteristics on the basis of the simple pixel structure and driving method. However, since the light emission time of the pixels of this system is equal to that of the simple matrix system, the current value must be increased. While under such a situation, the means for ensuring the reliability of the device is required, any of the effective techniques therefor has not yet been disclosed.
According to the present invention, there is provided an (OLED display device in which a single switch transistor is provided in each of pixels, and a constant current-voltage source is connected to the outside of a panel in order to carry out the driving, wherein in order to reduce the degradation of the luminance characteristics due to the flowing of a large current through the OLED, the voltage scheme is adopted in which in the conduction of the switch transistor, a reverse bias is applied to the OLED, and a driving waveform is provided in which the reverse bias is held in the non-conduction of the switching transistor. In addition, in order to reduce the level of a momentary current which is caused to flow through the OLED, a ramp wave or a square wave is applied to one side electrode of a storage capacitor to provide a driving waveform in which a current contributing to the light emission is caused to flow even in the non-conduction of the switching transistor.
According to one aspect of the present invention, there is provided an organic LED display device including: thin film transistors in which a plurality of gate lines and a plurality of data lines intersecting the plurality of gate lines are provided on a substrate, pixels are defined by the plurality of gate lines and the plurality of data lines, and a gate scanning signal is applied to the pixels through the gate lines, respectively; and light emitting devices each of which emits light by a driving current, which is caused to flow between an associated one of pixel electrodes formed in correspondence to the pixels and an associated one of counter electrodes opposite to the respective pixel electrodes, in accordance with a data signal which is supplied from the associated one of the data lines synchronously with a timing when the associated one of the thin film transistors becomes the conduction state, wherein each of the light emitting devices is an organic LED device, and for a part of a period of time when the associated one of the thin film transistors is in the non-conduction state, the associated one of the organic LED devices is in the non-light emission state, and also a bias having the polarity reverse to that in the light emission is applied thereto.
According to another aspect o the present invention, there is provided an organic LED display device including: thin film transistors in which a plurality of gate lines and a plurality of data lines intersecting the plurality of gate lines are provided on a substrate, pixels are defined by the plurality of gate lines and the plurality of data lines, and a gate scanning signal is applied to the pixels through the gate lines, respectively; and light emitting devices each of which emits light by a driving current, which is caused to flow between an associated one of pixel electrodes formed in correspondence to the pixels and an associated one of counter electrodes opposite to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Organic light emitting diode display and operating method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Organic light emitting diode display and operating method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic light emitting diode display and operating method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3154554

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.