Organic electrolyte electric cell

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Include electrolyte chemically specified and method

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S306000, C429S212000

Reexamination Certificate

active

06660435

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention concerns a process for the production of an organic electrolyte electric cell with a unitary structure.
2. Description of the Prior Art
A cell with a unitary structure is a cell in which the elements constituting it, in particular the electrodes and the separator, are integral so that each element follows all of the dimensional variants of the cell during its operation.
A number of prior art documents propose a process for the production of a cell with a unitary structure which uses a plasticizing additive during assembly of the elements of the cell.
U.S. Pat. No. 5,456,600 describes a process for the production of a cell with a unitary structure which consists of adhering the cell elements, namely the electrodes, the separator and optionally the collectors, by rolling. Each element of the cell is in the form of a polymeric film, preferably based on a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP). The separator and optionally the other elements of the cell contain a plasticizer which conserves the microstructure of the elements during rolling. The plasticizer is then eliminated by extracting it with a selective solvent.
In U.S. Pat. No. 5,540,741, a first electrode is constituted by a conductive support on which a paste containing a polymer, a plasticizing additive and an electrochemically active material are deposited. The polymer is preferably a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP). After drying, the electrode is coated with a film which constitutes the separator. The electrode-separator assembly is then coated with a second electrode and heated under pressure. The plasticizer is then extracted using a solvent which is inert towards the polymer.
U.S. Pat. No. 5,552,239 describes the same process as above using other polymers, such as polyvinyl chloride, acrylonitrile/butadiene copolymers and polyacrylonitrile polymers, to constitute the separator.
The three processes described above have the advantage of allowing the cell to be assembled in the open air. However, the plasticizer extraction step is lengthy and difficult.
The aim of the present invention is to provide a process for the production of an organic electrolyte electric cell with a unitary structure:
which comprises a limited number of simple steps;
which does not use a long and complex extraction step; and
which can produce a cell with minimal dimensional variants.
SUMMARY OF THE INVENTION
The present invention thus provides a process for the production of an organic electrolyte electric cell with a unitary structure comprising at least one pair of electrodes comprising:
a first electrode comprising the superposition of a first layer containing an electrochemically active material and a porous second layer of a polymeric material having a free face; and
a second electrode comprising a porous layer having at least one free face and containing an electrochemically active material;
wherein the electrodes are assembled by adhesive bonding, bonding being carried out by coating an adhesive onto the free face of the porous layer of one of the two electrodes and then bringing the free face coated with a film of adhesive into contact with the free face of the porous layer of the other electrode to form an electrochemical couple.
The first electrode comprising a superposition of two layers simultaneously:
functions as the seat of the electrochemical reaction, which uses the electrochemically active material contained in the first layer;
functions as the electrical separator to prevent any contact between the active material of the first electrode and that of the second, which is ensured by the second layer constituted by a polymeric material selected for its electrical insulating properties; and
functions as a reservoir for the electrolyte since the second porous layer is constituted by a polymeric material which has a physicochemical affinity for the electrolyte.
In the present invention, the second layer of the first electrode advantageously has a gelled microporous structure which can optimize both the electrical separator function and the electrolyte reservoir function.
In a first variant of the process of the invention, the adhesive is a solution containing:
a polymer with the same chemical formula as the polymer constituting the second porous layer of the first electrode;
a solvent in which the polymer readily dissolves at the adhesive preparation temperature; and
a non-solvent which is miscible with the solvent, which does not or only slightly dissolves the polymer at the adhesive preparation temperature and the proportion of which is insufficient to cause precipitation of the polymer.
Advantageously, the solvent has a boiling point in the range 40° C. to 80° C. and the non-solvent has a boiling point of more than 100° C.
The mass of the solvent represents 75% to 90% of the total mass of the solvent and the non-solvent and the mass of the polymer represents 10% to 20% of the mass of the adhesive solution.
The polymer is dissolved in the solvent and then the non-solvent is added to this mixture. The adhesive obtained is heated to a temperature at which the polymer/solvent
on-solvent mixture is stable and homogeneous during coating.
The polymer is advantageously selected from polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polymethylmethacrylate, cellulose triacetate (CA), a polysulfone, a polyether, a polyolefin such as polyethylene (PE), polyethylene oxide (PEO), polypropylene (PP) and copolymers thereof.
The polymer can also be an alloy of polyvinylidene fluoride (PVDF) with a polymer selected from a polysulfone, polymethylmethacrylate, polyvinylpyrrolidone and copolymers of polyvinylidene fluoride and polytetrafluoroethylene (PTFE), polyvinylidene fluoride and propylene hexafluoride and polyvinyl acetate (PVAC) and polyvinyl alcohol (PVA).
In a further embodiment of the process of the invention the polymer is an alloy constituted by an elastomeric polymer and a polymer which swells in the organic electrolyte.
The elastomeric polymer improves the mechanical properties of the second layer by limiting dimensional variants.
The elastomeric polymer can be selected from polyurethanes, an acrylonitrile-butadiene copolymer, a styrene-butadiene-styrene copolymer, a styrene-isoprene-styrene copolymer, polyesters and amide block polyethers.
The polymer which swells in the organic electrolyte must have a certain affinity for the electrolyte but without dissolving in the electrolyte at temperatures in the range 50° C. to 80° C. This polymer can be selected from polyvinylidene fluoride and its copolymers, polyacrylonitrile, polymethylmethacrylate, polyvinylformal, polybutylmethacrylate and polyvinyl chloride.
In the first variant of the process of the invention the polymer is preferably polyvinylidene fluoride. In this case the solvent is selected from acetone and tetrahydrofuran. The non-solvent is selected from butanol, propanol and ethylene glycol.
The skilled person can determine which solvent and which non-solvent are the most suitable for preparing the adhesive of the invention, depending on the polymer selected.
To this end, physico-chemical data in the literature concerning the selected polymer would be consulted in order to determine which solvents dissolve the polymer readily at the adhesive preparation temperature and which non-solvents miscible with the solvent do not dissolve or only very slightly dissolve the polymer at the adhesive preparation temperature.
In the first variant of the process of the invention the electrochemical couple formed is rolled, dried for 10 minutes at a temperature of about 20° C. and then vacuum dried for about 12 hours.
In a second variant of the process of the invention the adhesive is a paste constituted by the electrochemically active material of the porous layer of the second electrode, a polymer and a solvent which dissolves the polymer.
The polymer is preferably selected from polytetrafluoroethylene, carboxymethylcellulose, hydroxypropy

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Organic electrolyte electric cell does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Organic electrolyte electric cell, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic electrolyte electric cell will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3131190

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.