Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
1999-01-19
2004-01-27
Goldberg, Jerome D. (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S456000
Reexamination Certificate
active
06683100
ABSTRACT:
This invention is concerned with formulations of epothilones, and in particular formulations which are administrable intravenously.
The epothilones represent a class of microtubule stabilizing cytotoxic agents (see Gerth, K. et al., J. Antibiot. 49, 560-3 (1966); or Hoefle et al., DE 41 38 042) of the formula I. Typical representatives include epothilone A wherein R is a hydrogen and epothilone B wherein R is a methyl group.
They are 16-member macrolides containing seven, chiral centers and may also be characterized by various functionalities. For example, they may include other ring systems, such as an epoxide and/or a thiazole ring. They may have two free, derivatizable hydroxyl groups and the macrolide itself may comprise an ester linkage. The epothilones and their syntheses are described for example in published PCT application number WO 93/10121 and DE 41 38 042 A2, the contents of which are incorporated herein by reference. Typical epothilone derivatives and their syntheses are described in published PCT application number WO 97/19086 and WO 98/25929, the contents of which are incorporated herein by reference. Reference to the epothilones is preferably intended to mean epothilone A or epothilone B or their salts and derivatives or mixtures thereof as appropriate. Epothilone A or B may be used alone or they may be used as mixtures of A and B, preferably however they are used as solely A or solely B, most preferably solely B.
Cytotoxic agents are well known for the treatment of tumours. The anti-tumour activity of many of these compounds relies on the inhibition of cell proliferation and consequent induction of apoptosis and cell death. The majority of cytotoxic agents exert their effects through interference of DNA and/or RNA syntheses. However, for certain cytotoxic agents, e.g. members of the taxane family, e.g. paclitaxel, and the epothilones, their activity is reliant on their interference with microtubule dynamics. Microtubules are an important and attractive target for development of novel anti-cancer formulations.
However, little has been published on formulations suitable for epothilones. We have found that the 16-member macrolide system is particularly labile to degradation. Moreover, the poor solubility of these compounds makes it very difficult to form formulations for parenteral administration. Poorly soluble compounds conventionally may be brought into solution by warming the solvent during the dissolution process. However, given the high reactivity of these compounds they may be prone to degradation at elevated temperatures. Further, these highly reactive compounds may degrade over prolonged periods of storage as aqueous solutions. Concentrated solutions of the microtubule agent Taxol® which can be diluted in an aqueous medium prior to intravenous administration have been described. However, such solutions conventionally employ a surfactant such as Cremophor® (polyethoxylated castor oil). It is well known that surfactants such as Cremophor® can cause allergic reactions in patients.
Thus there is a need for commercially acceptable formulations suitable for epothilones, e.g. formulations which allow for storage, e.g. in a refrigerator, e.g. at 2-8° C.
We have now surprisingly found means to improve the solubility of epothilone A and B and/or render them more rapidly soluble without the use of a surfactant, for example a surfactant having an HLB value of 10 or more, e.g. Cremophor®, and without adversely affecting their potency.
Accordingly, the invention provides in one of its aspects a formulation comprising an epothilone, e.g. epothilone A or epothilone B, which hereinafter may be referred to as a formulation or formulations of the present invention.
In a preferred embodiment the invention provides a formulation in the form of an infusion concentrate which comprises an epothilone and a pharmaceutically acceptable organic solvent. The infusion concentrate does not require the use of a surfactant to improve the solubility of an epothilone, e.g. epothilone A and B, and/or render them more rapidly soluble. As stated above, surfactants such as a polyhydrogenated natural or hydrogenated castor oil, e.g. of an HLB value greater than 10, e.g. Cremophor®, may cause allergic reactions and they also can leach plasticisers from standard PVC containers, tubing and the like. Consequently, when they are employed one may be required to use special infusion apparatus, e.g. nitro-glycerine tubing and non-plasticised containers, such as glass, tubing and the like.
The aforementioned pharmaceutically acceptable organic solvent may be chosen from any such organic solvent known in the art. Said solvents may be used individually or as combinations with other solvents. Preferably the solvent is selected (i) from an alcohol with a carbon chain length of at least 2 or (ii) from an N-alkylpyrolidone, e.g. N-methylpyrolidone. Typical examples of alcohols are, e.g. a water miscible alcohol, e.g. absolute ethanol, or glycerol. Other alcohols include glycols, e.g. any glycol obtainable from an oxide such as ethylene oxide, e.g. propylene glycol. Other examples are polyols, e.g. a polyalkylene glycol, e.g. poly(C
2-3
)alkylene glycol. A typical example is a polyethylene glycol, e.g. of a preferred molecular weight of 200-600 daltons, more preferably, 200-400 daltons, especially 300. Polyethylene glycols may be used in distilled form and may be characterised for example by one or more of the following features: (i) an ethylene oxide content of maximally 20 ppm, typically less than 1 ppm, (ii) the absence of reducing substances and aldehydes (as determined by comparing the colour of a solution to a reference solution containing iron and cobalt chloride salts), (iii) a water content of less than 0.5% by weight, typically less than 0.1%, and (iv) a pH value between 4.0 to 7.0. For example a preferred glycol, e.g. polyethyleneglycol 300 may have an average molecular weight of 299, a pH value of 5.3, and may contain less than 1 ppm ethylene oxide, and less than 0.1% water. One skilled in the art would realize that polyethylene glycols of various molecular weights may be used as long as they are physiologically acceptable. The aforementioned solvents may contain occluded water. However, if desired, the pharmaceutically acceptable solvent may be mixed with water (“added water”), e.g about up to 45% water, e.g. up to 30%, e.g, 20%, e.g. 5%. Typical examples include ethanol/water mixtures, e.g 70% ethanol w/v, or polyethylene glycol/water mixtures, e.g. 90% polyethylene glycol w/v.
The epothilones, for example epothilone A or epothilone B, may be present in an infusion concentrate in a concentration of 0.1 to 100 mg/ml, e.g. 1 to 100 mg/ml, more preferably 0.5 to 50 mg/ml, more preferably 0.5 to 10 mg/ml, most preferably 1 mg/ml.
An epothilone, e.g. epothilone A or epothilone B, may be used individually or as a mixture of epothilones, e.g. a mixture of epothilone A and B. Given the stronger anti-tumour activity of epothilone B it may be employed in a lower concentration than epothilone A in the formulation. When used alone it is preferable to employ a concentration of epothilone A of 0.1 to 100 mg/ml, e.g. 10 to 100 mg/ml, preferably 0.1 to 50 mg/ml, e.g. 20 to 50 mg/ml, and especially 1 mg/ml. Epothilone B if used alone, is preferably employed in a concentration of 0.1 to 50 mg/ml, e.g. 10 to 50 mg/ml, e.g. 1 to 50 mg/ml, and especially 1 mg/ml.
Thus, in another aspect the present invention provides a pharmaceutical formulation, e.g. in the form of an infusion concentrate, comprising an epothilone, e.g. at a concentration of 0.1 to 100 mg/ml, preferably 0.5 to 50 mg/ml, more preferably 0.5 to 10 mg/ml, most preferably 1 to 5 mg/ml, and a pharmaceutically acceptable organic solvent, for example an alcohol, e.g. absolute ethanol or ethanol/water mixtures, e.g 70% ethanol, a polyol, e.g. propylene glycol, polypropylene glycol, polyethylene glycol 300, polyethylene glycol 400, aqueous polyethylene glycol solutions, e.g. 90% polyethylene glycol 300, or N-methylpyrolidone, more preferably polypropylene
Dohmann George R.
Goldberg Jerome D.
Novartis AG
LandOfFree
Organic compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Organic compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic compounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3187724