Data processing: vehicles – navigation – and relative location – Navigation – Employing way point navigation
Reexamination Certificate
2003-10-23
2004-11-02
Camby, Richard M. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Navigation
Employing way point navigation
C701S003000, C701S023000, C701S024000, C701S213000, C244S075100
Reexamination Certificate
active
06813559
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The field of the invention is data processing, or, more specifically, methods, systems, and products for navigating an unmanned aerial vehicle (“UAV”).
2. Description of Related Art
Many forms of UAV are available in prior art, both domestically and internationally. Their payload weight carrying capability, their accommodations (volume, environment), their mission profiles (altitude, range, duration), and their command, control and data acquisition capabilities vary significantly. Routine civil access to these various UAV assets is in an embryonic state.
Conventional UAVs are typically manually controlled by an operator who may view aspects of a UAV's flight using cameras installed on the UAV with images provided through downlink telemetry. Navigating such UAVs from a starting position to one or more waypoints requires an operator to have specific knowledge of the UAV's flight, including such aspects as starting location, the UAV's current location, waypoint locations, and so on. Operators of prior art UAVs usually are required generally to manually control the UAV from a starting position to a waypoint with little aid from automation. There is therefore an ongoing need for improvement in the area of UAV navigations.
SUMMARY OF THE INVENTION
Methods, systems, and products are described for UAV navigation that enable an operator to input a single interface operation, a mouseclick or joystick button click, thereby selecting GUI pixel from a displayed map of the surface of the Earth. The selected pixel maps to a waypoint. The waypoint is uploaded through uplink telemetry to a UAV which calculates a heading and flies, according to a navigation algorithm, a course to the waypoint. The heading is not necessarily the course if wind is present, depending on the navigation algorithm chosen for the flight. All this occurs with a single keystroke or mouseclick from the operator.
The operator's remote control device from which the pixel is selected is enabled according to embodiments of the present invention to be very thin. Often the remote control device can be a browser in a laptop or personal computer or a microbrowser in a PDA enhanced only with client-side scripting sufficient to map a pixel to a waypoint and transmit the waypoint to the UAV. The UAV itself generally includes the intelligence, the navigation algorithms, a web server to download map images to a client browser in a remote control device, a repository of Landsat maps from which HTML screens are formulated for download to the remote control device, and so on.
In addition to uplinking a single waypoint, operators of remote control devices according to embodiments of the present invention are enabled to enter through a user interface and upload to the UAV many waypoints which taken in sequence form an entire mission for a UAV that flies from waypoint to waypoint, eventually returning to a starting point. In addition to providing for a mission route comprising many waypoints, typical embodiments also support ‘macros,’ sets of UAV instructions associated with waypoints. Such UAV instructions can include, for example, instructions to orbit, take photographs or stream video, and continue flying a route or mission to a next waypoint. Because waypoints are entered with selected pixels and macros may be created by selecting UAV instructions from a pull down menu in a GUI, complex missions may be established with a few keystrokes of mouseclicks on an interface of a remote control device. Because the waypoints and UAV instructions are uploaded and stored on the UAV along with the navigation algorithms needed to travel from waypoint to waypoint, the remote control device may lose communications with the UAV or even be destroyed completely, and the UAV will simply continue its mission.
More particularly, methods, systems, and products are disclosed in this specification for navigating a UAV, the method comprising orbiting a waypoint, including defining four bracket lines surrounding a waypoint, wherein the bracket lines identify a range of latitude and a range of longitude; flying the UAV from a course segment having coordinate values in a range into a course segment not having coordinate values in the range, wherein a bounding bracket line defines a boundary between the segments; selecting, when the UAV enters the course segment not having coordinate values in the range, a heading parallel to a bracket line in dependence upon an orbital direction and a direction from a range exit position to the waypoint; turning the UAV in the orbital direction to fly on a the heading. Such embodiments include repeatedly carrying out the steps of: flying the UAV from a course segment having coordinate values in a range into a course segment not having coordinate values in the range, wherein a bounding bracket line defines a boundary between the segments; and turning the UAV in the orbital direction to fly on a heading parallel to the bounding bracket line.
In many exemplary embodiments, selecting a heading parallel to a bracket in dependence upon an orbital direction and a direction from a range exit position to the waypoint includes turning in the orbital direction to fly on a heading that is parallel to a bracket line and no more than ninety degrees from the direction from the range exit position to the waypoint. Many embodiments include receiving a user's selection of orbital direction. Some exemplary embodiments also include dispatching the UAV, including: receiving in a remote control device a user's selection of a GUI map pixel that represents a waypoint for UAV navigation, the pixel having a location on the GUI; mapping the pixel's location on the GUI to Earth coordinates of the waypoint; transmitting the coordinates of the waypoint to the UAV; reading a starting position from a GPS receiver on the UAV; and piloting the UAV from the starting position to the waypoint in accordance with a navigation algorithm. In some embodiments, mapping the pixel's location on the GUI to Earth coordinates of the waypoint includes: mapping pixel boundaries of the GUI map to Earth coordinates; identifying a range of latitude and a range of longitude represented by each pixel; and locating a region on the surface of the Earth in dependence upon the boundaries, the ranges, and the location of the pixel on the GUI map.
In many embodiments, locating a region on the surface of the Earth in dependence upon the boundaries, the ranges, and the location of the pixel on the GUI map includes: multiplying the range of longitude represented by each pixel by a column number of the selected pixel, yielding a first multiplicand; multiplying the range of longitude represented by each pixel by 0.5, yielding a second multiplicand; adding the first and second multiplicands to an origin longitude of the GUI map; multiplying the range of latitude represented by each pixel by a row number of the selected pixel, yielding a third multiplicand; multiplying the range of latitude represented by each pixel by 0.5, yielding a fourth multiplicand; and adding the third and fourth multiplicands to an origin latitude of the GUI map.
Many exemplary embodiments also include receiving user selections of a multiplicity of GUI map pixels representing waypoints, each pixel having a location on the GUI; mapping each pixel location to Earth coordinates of a waypoint; assigning one or more UAV instructions to each waypoint; transmitting the coordinates of the waypoints and the UAV instructions to the UAV; storing the coordinates of the waypoints and the UAV instructions in computer memory on the UAV; piloting the UAV to each waypoint in accordance with one or more navigation algorithms; and operating the UAV at each waypoint in accordance with the UAV instructions for each waypoint.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of exemplary embodiments of the invention as illustrated in the accompanying drawings wher
Bodin William Kress
Redman Jesse J. W.
Thorson Derral C.
Biggers John R.
Biggers & Ohanian LLP
Camby Richard M.
Carwell Robert M.
LandOfFree
Orbiting a waypoint does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Orbiting a waypoint, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Orbiting a waypoint will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3345370