Package making – Methods – Filling preformed receptacle
Reexamination Certificate
1999-12-10
2002-12-17
Kim, Eugene (Department: 3721)
Package making
Methods
Filling preformed receptacle
C053S475000, C053S244000, C053S246000, C053S900000
Reexamination Certificate
active
06494022
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to pill packaging devices and methods and, more particularly, to an orbital motion device and associated method for packaging pills, tablets, capsules, and the like.
BACKGROUND OF THE INVENTION
Pharmaceutical products such as pills, tablets, capsules, and the like are often packaged in disposable packaging for distribution to the consumer. Such disposable packaging includes thermoformed and cold formed blister packages as well as pouches, sachets, or disposable bottles.
Conventional blister packages typically include a generally planar web portion having a plurality of receptacles formed therein. A thermoforming process, for example, can be used to form the receptacles in a thermoplastic web. Each receptacle in the web may receive one or more pills and the receptacles may be arranged in a grid pattern having multiple rows and/or columns. After pills have been placed in all of the receptacles, an aluminum or plastic foil layer is adhered to the planar web portion to seal the pills within the receptacles.
An important aspect of forming these packages relates to the placement of the pills in the receptacles prior to the foil layer being applied. This procedure is preferably performed by an automated machine capable of precisely and accurately placing the pills into the receptacles at a high speed. An exemplary form of such an apparatus has been commercially available under the name, “Aylward Feed System” from Aylward® Enterprises, Inc. of New Bern, N.C., also the assignee of the present invention. The Aylward Feed System includes a feeder cassette and drop chute assembly having a plurality of chutes for guiding pills into the appropriate receptacles. An orienting tray is positioned above the feeder cassette for passing pills into the feeder cassette which, in turn, passes the pills into the drop chutes.
The orienting tray, the feeder cassette, and the drop chute assembly are mounted on a frame which extends over a conveyor having a series of empty pill blister packages placed thereon. The frame is generally movable in registration with the pill packages moving thereunder. The frame is fixed in the horizontal direction of the conveyor if the conveyor is an intermittent type. If the conveyor is a continuous type, the frame is moved on an undercarriage driven at the same speed as the conveyor. Therefore, with a continuous conveyor, the frame “gallops” back to register and moves with the next blister package after the preceding package has been filled.
Accordingly, as an empty pill package is moved under the drop chute, the drop chute is lowered and an escapement mechanism is activated in the feeder cassette to release a single pill which falls through the drop chute and into the corresponding receptacle in the package. More particularly, for example with blister packages, the drop chute is lowered and a pill is released to fall through the drop chute until it engages the bottom of the blister. The frame is then raised which, in turn, raises the drop chute and deposits the pill in the blister. This operation defines a gravity feed pill packaging system.
The drop chute assembly may include a plurality of individual chutes arranged in a block so as to define a grid. Each of the chutes extends in a generally vertical direction, but may include a portion at the lower end thereof which is angled so that a pill exiting the drop chute does so at an acute angle relative to the blister package.
In operation, where a pill is being packaged in a loose-fitting receptacle, this type of system will often place a pill into the blister receptacle by sliding a pill down the drop chute, wherein the lower end thereof is angled so that a pill exiting the drop chute is placed in the blister package at an acute angle relative thereto. Since the pill is deposited into the receptacle at an angle, it will sometimes “slide” into the receptacle until the leading edge of the pill engages a side wall thereof The drop chute is then moved away from the blister receptacle to allow the trailing edge of the pill to clear the drop chute and drop into the receptacle under the force of gravity. Thus, the pill is introduced to the receptacle, essentially diagonally, at an angle corresponding to the angle of the lower end of the drop chute. An apparatus and method of this type for packaging pills is disclosed in U.S. Pat. No. 5,737,902 to Aylward, which is incorporated herein in its entirety by reference.
Although these types of feeders have achieved widespread commercial acceptance, problems may arise if the pills are being deposited into a package having receptacles which are closely toleranced or “tight fitting” with respect to the dimensions of the pills. Tight fitting receptacles are desirable in some instances, such as in blister packaging, wherein the tight tolerances minimize rattling of the pills within the receptacles. However, where a pill is to be inserted into a tightly toleranced receptacle using these types of systems, the pill may not be capable of simply being slid into the receptacle in a diagonal orientation.
For example, for a caplet which is generally in the shape of a transversely flattened capsule, the dimensions of the receiving receptacle in the blister package may be only slightly greater than the dimensions of the caplet. That is, the overall length and width of the receptacle may only be slightly greater than the overall length and width of the caplet, respectively. Accordingly, when the caplet is slid into the receptacle at an angle with the leading edge of the caplet dropping into the receptacle and engaging a side wall thereof before the trailing edge is released, the caplet may become oriented with its diagonal dimension approximately parallel or angled slightly upward relative to the planar web portion of the blister package. In this situation, the maximum dimension of a longitudinal cross-section of the caplet, here the diagonal dimension, may be slightly greater than the length of the accommodating receptacle and thus the trailing edge of the caplet will lie against a portion of the side wall of the receptacle, above the bottom wall thereof The force of gravity may not be sufficient to cause the pill to drop fully into the receptacle, which leaves part of the trailing edge of the caplet extending above the planar web portion of the blister packet. This can also occur if the blister package material is wrinkled or otherwise distorted in the bottom or sides of the receptacle. In some instances, a caplet or pill may even “stand up” on its leading edge within a receptacle. As would be appreciated, these occurrences may have an adverse effect on the subsequent application of the foil layer if the trailing edge of the caplet extends above the plane of the blister package.
Thus, there exists a need for an improved packaging apparatus and method for placing pills and the like into pill receptacles such as blister packages in a preferred orientation, more particularly in the receptacle and below the planar web portion of the blister package, before application of a sealing foil layer. Such an apparatus and method should be able to quickly and accurately insert the pills, even the pills which are “standing up,” into the receptacles to provide high packaging speed and quality. Such an apparatus and method should also be capable of efficiently and reliably inserting pills into receptacles dimensioned in close tolerance to said pills.
SUMMARY OF THE INVENTION
The above and other needs are met by the present invention which, in one embodiment, provides a packaging device for a pill packaging apparatus, wherein the packaging device is used for inserting pills into a series of pill receptacles being conveyed generally horizontally thereunder. The packaging device generally comprises a rotationally-driven shaft and a resilient pad eccentrically coupled to the shaft, the shaft then driving the resilient pad in an orbital motion. In one advantageous embodiment, the resilient pad is capable of being brought into engagement with pills protruding from the
Alston & Bird LLP
Aylward Enterprises, Inc.
Kim Eugene
LandOfFree
Orbital motion pill packaging device and associated method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Orbital motion pill packaging device and associated method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Orbital motion pill packaging device and associated method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2944705