Oral transmucosal delivery of drugs or any other ingredients...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S772300

Reexamination Certificate

active

06210699

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a composition and a method for oral transmucosal delivery of active substances to a human or animal via the inner buccal cavity. More particularly, this invention relates to an improved dosage form which can easily adhere to the inner buccal cavity and sustain transmucosal release of drugs, odorants or any other ingredients and exhibit the activity effectively.
The sustained delivery of certain active substances, especially ionic peptide-based drugs, presents one of the greatest challenges in pharmaceutical science. Oral administration of pharmaceutical compositions has some drawbacks. For instance, it is difficult to keep the medicament at the desired location so that it can be absorbed, it is easily metabolized in the liver, and it is easily decomposed in the stomach. Accordingly, there has been much interest in the use of the mucosal lining of body cavities, for example the oral cavity, as the site of administration of active substances. Both the buccal and sublingual membranes offer advantages over other routes for administration. For example, drugs administered through the buccal and sublingual routes have a rapid onset of action, reach high levels in the blood, avoid the first-pass effect of hepatic metabolism, and avoid exposure of the drug to fluids of the gastrointestinal tract. Additional advantages include easy access to the membrane sites so that an active substance containing device can be applied, localized, and removed easily. Further, there is good potential for prolonged delivery through the mucosal membrane. M. Rathbone & J. Hadgraft, 74
Int'l J. of Pharmaceutics
9 (1991).
The sublingual mucosa includes the membrane of the ventral surface of the tongue and the floor of the mouth, whereas the buccal mucosa constitutes the lining of the cheek. The sublingual mucosa is relatively more permeable than the buccal mucosa, thus giving rapid absorption and acceptable bioavailability of many active substances. Furthermore, the sublingual mucosa is convenient, accessible, and generally well accepted. This route has been investigated clinically for the delivery of a substantial number of drugs. It is the preferred route for administration of nitroglycerin and is also used for buprenorphine and nifedipine. D. Harris & J. Robinson, 81
J. Pharmaceutical Sci.
1 (1992).
The buccal mucosa is less permeable than the sublingual mucosa. The rapid absorption and high bioavailabilities seen with sublingual administration of drugs is not generally provided to the same extent by the buccal mucosa. D. Harris & J. Robinson, 81
J. Pharmaceutical Sci
. (1992) at 2. The permeability of the oral mucosa is probably related to the physical characteristics of the tissues. The sublingual mucosa is thinner than the buccal mucosa, thus permeability is greater for the sublingual tissue. The palatal mucosa is intermediate in thickness, but is keratinized thus lessening its permeability, whereas the other two tissues are not.
The ability of molecules to permeate through the oral mucosa appears to be related to molecular size, lipid solubility, ionization and many other factors. Small molecules, less than about 100 daltons, appear to cross the mucosa rapidly. As molecular size increases permeability decreases rapidly. Lipid-soluble compounds are more permeable through the mucosa than are non-lipid-soluble molecules. In this regard, the relative permeabilities of molecules seems to be related to their partition coefficients. The degree of ionization of molecules, which is dependent on the pK
a
of the molecule and the pH at the membrane surface, also greatly affects permeability of the molecules. Maximum absorption occurs when molecules are unionized or neutral in electrical charge and absorption decreases as the degree of ionization increases. Therefore, charged drugs, such as ionized polypeptide based drugs, present a significant challenge to absorption through the oral mucosa.
For a number of practical purposes it can be useful to affix a device containing an active substance within a mucosal-lined body cavity, such as the oral cavity. For example, conventional forms of substance delivery such as a lozenge, troche, breath freshener, mouth wash or spray work by shedding or admixing the substance into the saliva, which bathes the tissues of the oral cavity and throat as it passes posteriorly towards the esophagus. Such forms remain in the oral cavity only for short periods of time, generally not more than about 10 to 20 minutes, and they cannot always provide for effective sustained delivery of the substance. Moreover, the presence of a lozenge or troche in the user's mouth can be annoying or distracting, and may interfere with speech or with the ingestion of fluids. Holding the lozenge in the mouth to avoid either swallowing it or spitting it out requires conscious effort, and inadvertent loss can be embarrassing.
There are numerous instances where the active substance is intended for use at the site of delivery rather than absorption through mucosal membranes for systemic use. For example breath fresheners for the treatment of, or as a prophylactic against, halitosis, or agents for the treatment of xerostomia (dryness of the mouth) function directly in the oral cavity rather than through absorption. However, it would be desirable to have such agents held in place in the oral cavity to avoid the problems associated with lozenges or troches as noted above.
Various bioadhesives have been proposed for use in establishing adhesive contact with mucosal surfaces. See, for example, Biegajski, U.S. Pat. No. 5,700,478; Lowey, U.S. Pat. No. 4,259,314; Lowey, U.S. Pat. No. 4,680,323; Yukimatsu et al., U.S. Pat. No. 4,740,365; Kwiatek et al., U.S. Pat. No. 4,573,996; Suzuki el al., U.S. Pat. No. 4,292,299; Suzuki et al., U.S. Pat. No. 4,715,369; Mizobuchi et al., U.S. Pat. No. 4,876,092; Fankhauser et al, U.S. Pat. No. 4,855,142; Nagai et al., U.S. Pat. No. 4,250,163; Nagai et al., U.S. Pat. No. 4,226,848; Browning, U.S. Pat. No. 4,948,580; Schiraldi et al., U.S. Reissue Patent Re.33,093; and J. Robinson, 18
Proc. Intern. Symp. Control. Rel. Bioact. Mater
. 75 (1991). Typically, these adhesives consist of a matrix of a hydrophilic, e.g., water soluble or swellable, polymer or mixture of polymers which can adhere to wet mucosal surfaces. Such polymers are inclusive of hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxy ethylcellulose, ethylcellulose, carboxymethyl cellulose, dextran, gaur-gum, polyvinyl pyrrolidone, pectins, starches, gelatin, casein, acrylic acid, acrylic acid esters, acrylic acid copolymers, vinyl polymers, vinyl copolymers, vinyl alcohols, alkoxy polymers, polyethylene oxide polymers, polyethers, and the like. These adhesives may be formulated as ointments, thin films, tablets, troches, and other forms. Often, these adhesives have had medicaments mixed therewith to effectuate slow release or local delivery of a drug.
However, these known bioadhesives have several drawbacks. For example, adhesives in the form of pastes, creams or ointments are messy and inconvenient to use, and generally adhere poorly or not at all and are not suitable for extended periods of use. Some forms of adhesives, such as Carbopol (carboxyvinyl polymers), are not water soluble thus leave a tacky, greasy residue in the oral cavity of the wearer, and can cause sustained oral irritation. In addition, Carbopol based adhesives are ionic polymers which interact with ionic active substances, such as ionic polypeptide based drugs, and can inhibit absorption of such active substances. On the other hand, some forms of adhesives remain in the oral cavity for only short periods of time, e.g. generally not more than about 10 or 20 minutes, and therefore cannot provide for delivery of a substance over an extended period of time.
Improved adhesives have been attained by using sodium alginate to overcome some of the problems associated with Carbopol based adhesives. However, sodium alginate is also an anionic polymer that shows ionic interaction with c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oral transmucosal delivery of drugs or any other ingredients... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oral transmucosal delivery of drugs or any other ingredients..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oral transmucosal delivery of drugs or any other ingredients... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2461518

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.