Oral composition providing enhanced tooth stain removal

Drug – bio-affecting and body treating compositions – Dentifrices – Ferment containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S049000, C424S052000, C424S094100, C424S094600, C424S094630

Reexamination Certificate

active

06379654

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to oral compositions for removing tooth stains, and more particularly, to enzyme enhanced silica abrasive containing dental compositions effecting stain removal from teeth.
2. The Prior Art
Many substances that a person confronts or comes in contact with on a daily basis can “stain” one's teeth. In particular, foods, and fluids such as tea and coffee that one consumes tend to stain one's teeth. These products or substances tend to accumulate on the enamel layer of the tooth and form a pellicle film over the teeth. These staining and discoloring substances can then permeate the enamel layer. This problem occurs gradually over many years, but imparts a noticeable discoloration of the enamel of one's teeth.
Synthetically produced silicas incorporated in dentifrice compositions act as an abrasive to debride and physically scrub the external surface of the teeth. This scrubbing action removes the organic film (i.e. the pellicle), formed of salivary proteins which covers the teeth and which become stained and discolored. Such physical removal of the stained pellicle is a simple and effective means of removing the undesirable surface staining and discoloration which occurs daily.
Synthetic silicas useful as dentifrice abrasives include both silica gels and precipitated silicas which are prepared by the neutralization of aqueous silicate solutions with a strong mineral acid. In the preparation of silica gel, a silica hydrogel is formed which is then typically washed to a low salt content. The washed hydrogel may be milled to the desired size, or otherwise dried, ultimately to the point where its structure no longer changes as a result of shrinkage. When preparing such synthetic silicas, the objective is to obtain abrasives which provide maximal cleaning (i.e. removal of stained pellicle) with minimal damage to the tooth enamel and other oral tissue.
U.S. Pat. No. 4,153,680 and GB Patent Application 2,038,303A both disclose the general use of silica hydrogels or hydrated silica gels as dental abrasives.
U.S. Pat. No. 5,939,051 discloses dentifrice compositions prepared with silica gels having low abrasion and high cleaning properties.
U.S. Pat. Nos. 5,658,553 and 5,651,958 disclose dentifrice compositions containing a combination of precipitated silica and silica gels having high cleaning and low abrasion as indicated by their low radioactive dentin abrasion (RDA) values.
Copending patent application U.S. Ser. No. 09/567,402 filed May 9, 2000 discloses a silica hydrogel containing about 10 to about 35% by weight water, whereby the dentifrice composition has an RDA of from 110 to 200, and a PCR of from about 150 to about 300.
In spite of the extensive prior art relating to silica hydrogels and other abrasive compounds used to prepare dentifrice compositions for oral cleaning and stain removal, there is still a need for additional compositions providing improved pellicle cleaning and stain removal.
SUMMARY OF THE INVENTION
In accordance with the present invention there is provided a silica abrasive dentifrice composition which exhibits heightened tooth stain removal which composition comprises an orally acceptable vehicle containing a combination of a low oil absorption silica abrasive having an oil absorption value of less than 100 cubic centimeters (cc)/100 grams (g) silica and a proteolytic enzyme.
DETAILED DESCRIPTION OF THE INVENTION
Low Oil Absorption Silica Abrasives
Silica abrasives useful in the practice of the present invention include silica gels and precipitated amorphous silica having an oil absorption value of less than 100 cc/100 g silica and preferably in the range of from about 45 cc/100 g to less than about 70 cc/100 g silica. These silicas are colloidal particles having an average particle size ranging from about 3 microns to about 12 microns, and more preferably between about 5 to about 10 microns and a pH range from 4 to 10 preferably 6 to 9 when measured as a 5% by weight slurry.
Oil absorption values are measured using the ASTM Rub-Out Method D281. The low oil absorption silica abrasive is present in the oral are compositions of the present invention at a concentration of about 5 to about 40% by weight and preferably about 10 to about 30% by weight.
Low oil absorption silica abrasives particularly useful in the practice of the present invention are marketed under the trade designation Sylodent XWA by Davison Chemical Division of W. R. Grace & Co., Baltimore, Md. 21203. Sylodent 650 XWA, a silica hydrogel composed of particles of colloidal silica having a water content of 29% by weight averaging from about 7 to about 10 microns in diameter, and an oil absorption of less than 70 cc/100 g of silica is a preferred example of a low oil absorption silica abrasive useful in the practice of the present invention.
Another low oil absorption silica abrasive particularly useful in the practice of the present invention is marketed under the trade designation DP-105 by J. M. Huber Chemicals Division, Havre de Grace, Md. 21078 is a precipitated amorphous silica having an average particle size distribution from 5 to 12 microns and an oil absorption in the range of 50 to 70 cc/100 g.
The low oil absorption silica abrasive can be used as the sole abrasive in preparing the dentifrice composition of the present invention or in combination with other known dentifrice abrasives or polishing agents.
Commercially available abrasives which may be used in combination with the low oil absorption silica abrasive include precipitated silicas having a mean particle size of up to about 20 microns, such as Zeodent 115, marketed by J. M. Huber Chemicals Division, Havre de Grace, Md. 21078, or Sylodent 783 marketed by Davison Chemical Division of W. R. Grace & Company. Other useful dentifrice abrasives include sodium metaphosphate, potassium metaphosphate, tricalcium phosphate, dihydrated dicalcium phosphate, aluminum silicate, calcined alumina, bentonite or other siliceous materials, or combinations thereof.
The total quantity of abrasive present in the dentifrice compositions of the present invention is at a level of from about 5% to about 40% by weight, preferably from about 5% to about 30% by weight when the dentifrice composition is a toothpaste.
Enzymes
The proteolytic enzymes useful in the practice of the present invention are those well known protein substances within the class of proteases, which breakdown or hydrolyze proteins (proteases). The proteolytic enzymes are obtained from natural sources or by the action of microorganisms having a nitrogen source and a carbon source. Examples of proteolylic enzymes useful in the practice of the present invention include papain, bromelain, chymotrypsin, ficin and alcalase.
Papain obtained from the milky latex of the Papaya tree is the proteolytic enzyme preferred for use in the practice of the present invention and is incorporated in the oral care composition of the present invention in an amount of about 0.1 to about 10% by weight and preferably about 0.5 to about 5% by weight, such papain having an activity of 150 to 300 units per milligram as determined by the Milk Clot Assay Test of the Biddle Sawyer Group (see J. Biol. Chem., vol. 121, pages 737-745).
Enzymes which may beneficially be used in combination with the proteolytic enzymes include carbohydrases such as glucoamylase, alpha-amylase, beta-amylase, dextranase and mutanase and lipases such as plant lipase, gastric lipase and pancreatic lipase.
Glucoamylase is a saccharifying glucoamylase of Aspergillus niger origin. This enzyme can hydrolyze both the alpha-D-1,6 glucosidic branch points and the alpha-1,4 glucosidic bonds of glucosyl oligosaccharides. The product of this invention comprises about 0.001 to 10% of the carbohydrases. The lipase enzyme used in this invention is derived from a select strain of Aspergillus niger. The enzyme has maximum lipolytic activity at pH 5.0 to 7.0 when assayed with olive oil. The enzyme has 120,000 lipase units per gram.
The carbohydrases and lipases m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oral composition providing enhanced tooth stain removal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oral composition providing enhanced tooth stain removal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oral composition providing enhanced tooth stain removal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2932844

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.