Optomodule and connection configuration

Optical waveguides – Integrated optical circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S088000, C257S080000, C257S084000

Reexamination Certificate

active

06483960

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention lies in the field of optical components, in particular optical subcomponents, which are also referred to as opto-ICs.
Such optical components are used to generate, to receive, to convert, to process, etc., optical signals. By way of example, a PIN-photodiode-preamplifier combination may be involved. The construction of the optical subcomponents on the basis of T046 housings is prior art.
The article by C. Schwantes: “Small Form Factor: Higher Density For Fiber Based High Speed Networking”,
Electronic Components and Technology Conference IEEE
, 1999, pages 539-542, discloses optical subcomponents or optomodules on the basis of lead frame technology. The increasing dissemination and application of optomodules demands a higher degree of integration density, which cannot be achieved using these prior-art technologies.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide an optomodule that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that enables a higher integration density of the components of the optomodule.
With the foregoing and other objects in view, there is provided, in accordance with the invention, an optomodule. The optomodule includes a carrier substrate having a front side and a rear side and a plated-through opening formed therein. The optomodule also includes wiring applied on the front side of the carrier substrate having at least one line. The optomodule also includes contacts configured on the rear side of the carrier substrate and electrically connected to a line of the wiring via the plated-through opening. The optomodule includes an optosemiconductor for transmitting and receiving light. The optosemiconductor electrically contacts the line of the wiring and is disposed on the front side of the carrier substrate near the through opening formed in the carrier substrate, in such a way that the light can be transmitted and received through the through opening.
With the objects of the invention in view, there is also provided a connection configuration. The connection configuration includes an optomodule as described above. The connection configuration also includes a printed circuit board section. The contacts electrically contact a wiring of the printed circuit board section. The optomodule and the contacts mount on the printed circuit board section so light can be passed through an opening in the printed circuit board section.
The optomodule achieves the object of the invention. The optomodule includes a carrier substrate; wiring applied on a front side of the carrier substrate; contacts, which are configured on a rear side of the carrier substrate and are electrically connected to a line of the wiring via at least one plated-through hole formed in the carrier substrate; and an optosemiconductor for transmitting and/or for receiving light. The optosemiconductor being electrically contacts the line of the wiring and being configured on a front side of the carrier substrate in the region of a through opening, formed in the carrier substrate, in such a way that the light can be transmitted and/or received through the through opening.
The invention is based on the essential concept of utilizing, in the context of construction and production of optomodules with an optosemiconductor, technologies of the kind used for integrated circuits. This enables a high level of integration of the components of the optomodule because the wiring of the carrier substrate can be realized in a significantly more complex and more flexible manner than with the known technologies, for example the lead frame technology.
An essential advantage of the invention compared with the prior art is that an improved radio frequency capability of the optomodule, in particular of the carrier substrate, is ensured. This is the consequence of the improved wiring possibilities and short connections of radio frequency components, for example capacitors in the carrier substrate.
A further advantage of the invention is that it is possible to utilize technologies and processing steps for the embodiment of which there exists comprehensive experience in connection with the fabrication of integrated circuits.
A development of the invention provides for the optosemiconductor to be configured on a front-side surface of the carrier substrate, thereby enabling the optosemiconductor to be applied simply and in a manner that can be performed with little outlay.
In an advantageous refinement of the invention, a protective layer at least partly surrounds the optosemiconductor and is applied on the front side of the carrier substrate in such a way that an essentially closed protective surface is formed. Thereby, a protection against mechanical interfering influences during the use or the deployment of the optomodule is formed.
In one embodiment, a component is expediently configured on the front side of the carrier substrate. The component is in electrical contact with the optosemiconductor and the line of the wiring and is at least partly surrounded by the protective layer. This enables the optosemiconductor to be connected for operation and control purposes.
A potting compound or an injection-molding compound preferably forms the protective layer. This allows a protective layer to be produced with the aid of known techniques in a simple manner.
A preferred embodiment of the invention with regard to the use of modern chip fabrication technologies provides for the optosemiconductor and/or the component to be connected to the line of the wiring in each case via at least one bonding connection.
A preferred refinement of the invention with regard to the complex wiring and the improved radio-frequency capability provides for the wiring to comprise at least one wiring plane and a ground plane.
An expedient development of the invention provides for the carrier substrate to be formed from a printed circuit board material. As a result of which, a multiplicity of proven techniques is available for the processing of the carrier substrate.
An expedient refinement of the invention with regard to the interference-free functionality of the optomodule provides for a shield to be formed for the optosemiconductor and/or the component. The shield is formed with the aid of a shielding layer. The shielding layer extends essentially over the entire region of the carrier substrate.
In order to increase the integration density of the optomodule, the shielding layer may be encompassed by the carrier substrate.
In an expedient development of the invention, a low-inductance connection of the optomodule can be ensured by the contact being solder balls.
A preferred embodiment with regard to the flexibility of the connection of the optomodule provides for the contact, in each case, to be electrically connected to connecting pins.
In an advantageous embodiment, improved coupling of the light emitted by the optosemiconductor or of the light to be coupled onto the optosemiconductor can be achieved by an optical imaging element being configured in the through opening.
A preferred refinement of the invention with regard to the directing of the light emitted by the optosemiconductor to another component, for example a plug with an optical waveguide, provides for an optical element to be configured on a rear-side surface of the carrier substrate, so that the light passing through the through opening can be directed optically.
The advantages associated with the optomodule described expediently extend and improve the application possibilities for the optomodule when a connection configuration having such an optomodule and a printed circuit board section is formed, the contacts are in electrical contact with a wiring of the printed circuit board section, and the optomodule is mounted with the aid of the contacts on the printed circuit board section so that the light can be transmitted and/or received through an opening in the printed circuit board section. In this way, a flexible connection of the optomo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optomodule and connection configuration does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optomodule and connection configuration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optomodule and connection configuration will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2989803

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.