Optoelectronic network interface device

Multiplex communications – Pathfinding or routing – Switching a message which includes an address header

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S398000, C370S384000

Reexamination Certificate

active

06647010

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a network interface device and, more particularly, to a dynamically reconfigurable optoelectronic network interface device.
BACKGROUND OF THE INVENTION
In communication networks, such as a Local Area Network (LAN), the capability of reconfiguring the ports of a network interface device is essential for accommodating the changing needs of end-users. Specifically, this necessitates dynamic reconfigurability of the ports of a network interface device while the device is in operation within the communication network.
Conventional network interface devices using optoelectronic circuits are known and used in a number of important communication system applications, including Local Area Networks (LANs). A typical LAN interface device has multiple ports that are designed for use with different data rates corresponding to the data rates used in the communication network. For example, the interface device may have a large number of 100 Megabits/s ports and several 1 Gigabit/s ports. The interface device ports are configured according to the initial requirements, such as bandwidth needs, of end-users in the network. Although, reconfiguration of the end-user interface ports in such a communication network is possible, it none-the-less presents several significant limitations.
When used in a communication network that is operational, reconfiguration of the interface ports must be performed on the network side (e.g. in the communication network infrastructure) of the LAN interface device connection. This is usually accomplished by placing several manually reconfigurable optical patch panels with jumper fibers or an expensive optical switch in the wiring infrastructure. Subsequently, port and network modifications can be made by appropriate changes in the optical patch panels or optical switch. Since these methods of reconfiguration are generally costly and/or time consuming, they are prohibitive to the dynamic reconfiguration of network interface ports in response to the changing communication needs of end-users. Thus, opportunity exists to employ a more effective and less costly means to achieve reconfigurability in communication networks.
SUMMARY OF THE INVENTION
In accordance with the principles of the present invention, rapid port reconfigurability is achieved in a communication network by utilizing an optoelectronic interface device with an integrated electronic switch between the ports and the remaining electronic circuits. As a result of this design, the interface device's port connections to the network can be dynamically altered without disturbing physical connections to end-users.
In accordance with one aspect of the invention, dynamic port reconfiguration is enabled with a controllable electronic switch integrated into the optoelectronic interface device. Consequently, additional and costly optical switching elements to provide port reconfigurability are not required in the communication network. As a result of a unique configuration design and the use of a conventional controller to provide a control signal for reconfiguring the electronic switch, the present invention's network interface device provides dynamic reconfiguration of ports while supporting different signal bandwidths or data-rates at each of the ports. Thus, the network interface device supplies a means for dynamically allocating bandwidth according to an end-user's changing needs.
In accordance with another aspect of the invention, the optoelectronic interface device with an electronic switch is integrated onto a single optoelectronic Very Large Scale Integration (VLSI) chip. Therefore, a reduction in the cost of manufacturing is expected through the miniaturization and integration of a number of formerly discrete circuits.


REFERENCES:
patent: 4873681 (1989-10-01), Arthurs et al.
patent: 5541914 (1996-07-01), Krishnamoorthy et al.
patent: 5594576 (1997-01-01), Sutherland et al.
patent: 5912751 (1999-06-01), Ford et al.
patent: 6002692 (1999-12-01), Wills
patent: 6058112 (2000-05-01), Kerstein et al.
T. K. Woodward et al, “Optical Receivers for Optoelectronic VLSI”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 1, Apr. 1996, pp. 106-116.
K. W. Goossen et al. “GaAs MQW Modulators Integrated with Silicon CMOS”, IEEE Photonics Technology Letters, vol. 7, No. 4, Apr. 1995, pp. 360-362.
Wieland et al, “Optical Receiver Array In Silicon Bipolar Technology With Self-Aligned, Low Parasitic III/V Detectors for DC-1 Gbit/s Parallel Links”, Electronic Letters, vol. 27, 1991, p. 221.
A. V. Kirshnamoorthy et al, “3-D Integration of MQW Modulators Over Active Submicron CMOS Circuits: 375 Mb/s Transimpedance Receiver-Transmitter Circuit”, IEEE Photonics Technology Letters, vol. 7, No. 11, Nov. 1995, pp. 1288-1290.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optoelectronic network interface device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optoelectronic network interface device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optoelectronic network interface device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149138

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.