Optics: measuring and testing – By polarized light examination – With light attenuation
Patent
1991-01-28
1993-01-19
Rosenberger, Richard A.
Optics: measuring and testing
By polarized light examination
With light attenuation
356152, G01B 1114, G01B 1103, G01C 308
Patent
active
051810794
DESCRIPTION:
BRIEF SUMMARY
DESCRIPTION
The invention relates to an optoelectronic measurement arrangement for determining the relative position of two bodies to each other.
An optoelectronic measurement arrangement is known from DE-PS 33 14 089 for determining the relative position of two bodies to each the other, with light emitters, from which light beams emanate, at the first body and position-sensitive, two-dimensionally measuring light receivers at the second body, on which the light beams impinge, wherein signal pairs, which represent the relative translation and/or rotation and from which the relative position of the two bodies to each other is derivable, are produced by the light receivers from the position of the points of incidence and the beam axes. This measurement arrangement, however, suffers from the disadvantage that it requires three two-dimensionally measuring light receivers. Since two-dimensionally measuring light receivers are expensive components, the entire measurement arrangement is thereby greatly impaired in its economy.
In printed specification FR-A 2 194 949 (Selcom) it is described how the images of several punctiform light sources on an areal diode are distinguishable by a different modulation of the individual light sources. As examples for the application of the modulated light sources, however, there are mentioned only examples which all have the object of observation of the time course of movement processes, such as, for example, a golf track, a jump or the beginning or a 100 meter run. However, no reference is to be found anywhere in the specification that the light points emitting modulated light together with the receiver shall serve for technical measurement determination of the relative position of two bodies.
Partial calculations for the relative position of two systems are carried out in specification GB-A-2 005 950 (HAY). Auxiliary computations are performed by a camera and further arrangement in order that, for example, a tunnel-drilling machine maintains its straight course. Measurement technique by way of a wide angle objective of a camera represents an imprecise measurement. A calculation of the relative position of two systems in six degrees of freedom is not described. The points in the target planes are defined by light-emitting diodes, which are operated in sequence by switches.
The invention is therefore based on the task of providing an optoelectronic measurement arrangement which enables the relative position of two bodies to be determined in their six degrees of freedom with the least possible number of light receivers.
According to the invention this task is solved as indicated in patent claim 1. Developments of the invention are described in dependent patent claims 2 to 7.
Embodiments of the invention are illustrated in the drawings, in which:
FIG. 1 shows a basic representation of light emitters and light receiver,
FIG. 2 shows a perpendicular section through a joystick, and
FIG. 3 shows a partial section through a manipulating device.
An optoelectronic measurement arrangement 1 is schematically illustrated in FIG. 1. The measurement arrangement 1 consists of, for example, three light emitters 11, 12 and 13, which are arranged at the first body and from which light beams 21, 22 and 23 emanate, and a position-sensitive, two-dimensionally measuring light receiver 3 at the second body. The light beams 21, 22 and 23 are concentrated by, for example, optical systems 24, 25 and 26 onto the light receiver 3. The light emitters 11, 12 and 13 arranged at the first body form the corner points of a first triangle.
The axes of the light beams 21, 22 and 23 represent in pairs, different direction vectors and respectively intersect the light receiver 3 at different angles, for example the three angles .alpha.1, .alpha.2 and .alpha.3. For graphical reasons, it is not possible in FIG. 1 to draw in the angle .alpha.2. The points of incidence 31, 32 and 33 of the light beams 21, 22 and 23 form a second triangle on the light receiver 3. Through the use of more than three light sources, respecti
REFERENCES:
patent: 4330212 (1982-05-01), Miller
patent: 4923303 (1990-05-01), Lutz
patent: 5005979 (1991-04-01), Sontag et al.
Japanese Patent Abstracts, vol. 10, No. 232, Aug. 12, 1986, patent abstract 61-66911.
LandOfFree
Optoelectronic measurement arrangement does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optoelectronic measurement arrangement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optoelectronic measurement arrangement will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-105004