Optical waveguides – Optical fiber bundle – Fiber bundle plate
Reexamination Certificate
2001-06-18
2003-10-14
Juba, John (Department: 2872)
Optical waveguides
Optical fiber bundle
Fiber bundle plate
C385S115000, C385S024000, C385S039000
Reexamination Certificate
active
06633710
ABSTRACT:
BACKGROUND
The present invention involves fiber connection arrangements and methods of transmitting optical signals between optical signal emitters and detectors. More specifically, the present invention provides compact devices for connecting a plurality of optical signal emitters and detectors through image fiber bundles.
Integration of computer chips has proven to be troublesome over the years. Traditionally, inherent limitations on electrical conductor interconnections has hampered high speed communication between chips. As time progresses, integrated circuits become faster and smaller, thus, the limits of performance for these systems are further hampered by electrical resistance. To solve this problem, optic fiber interconnections were developed.
The use of fiber interconnections for optical signal transport allows high speed communications between optical signal emitters and detectors, such as Vertical Cavity Surface Emitting Lasers (VCSELs) or edge emitting lasers and photo-detectors commonly used on computer chips. While providing an acceptable alternative to electrical wire interconnections, the current state of the art provides for individual generally linear optical fibers attached between the signal emitters and detectors on two chips. The drawbacks of this are readily apparent because considerable time and labor must be spent establishing the individual fiber interconnections between optical signal emitters and detectors. It is also known to use an oversampling approach in order to alleviate some of the alignment concerns. This has proven to be somewhat successful in connecting two opto-electronic devices.
Another problem inherent in the current use of fiber optic interconnections is optical signal entry alignment to the transport fiber. Currently, alignment must be critically maintained in order for a fiber interconnection between optical signal emitters and detectors to be functional.
It has been known to use a fiber optic plate to connect two opto-electronic devices together. There is an additional limitation in that only two opto-electronic devices can be connected in a designated space. In systems using this arrangement, opto-electronic chips are positioned facing one another with a fiber optic plate located therebetween to provide the needed optical communication.
There is a need to provide an easy interconnect between optical signal emitters and detectors on multiple opto-electronic devices. There is a further need to more densely package a plurality of opto-electronic chips together to provide more compact arrangements while providing optical interconnections.
SUMMARY
The current invention provides optical signal transmission devices and methods of transmitting optical signals between optical signal emitters and detectors in a compact arrangement. The invention provides a multi-path optical signal transmission device which allows transmission of optical signals between optical signal emitters and detectors of multiple opto-electronic devices. The device comprises a multi-path structure with three active exterior faces allowing connection of multiple signal emitters and detectors, which are connected to differing exterior faces of the structure. The multi-path structure includes at least two coherent fiber bundle structures. Each coherent fiber bundle structure has at least a first, second and third face. The first face of the first coherent fiber bundle structure forms at least a portion of the first exterior face of the multi-path structure. The second face of the first coherent fiber bundle structure forms at least a portion of one of the second and third exterior faces of the multi-path structure. This provides optical communication between one of the first and second and the first and third exterior faces of the multi-path structure. A first face of the second coherent fiber bundle structure forms at least a portion of the second exterior face of the multi-path structure. The second face of the second coherent fiber bundle structure forms at least a portion of the third exterior face of the multi-path structure. This arrangement provides optical communication between the second and third exterior faces of the multi-path structure. The exterior faces of the multi-path structure are adapted to be optically connected to optical signal emitters or detectors on at least three opto-electronic devices.
In another aspect, a method of transmitting optical signals from at least three opto-electronic chips through an optical signal transmission device comprised of coherent fiber bundle structures, is provided. This method entails providing a first opto-electronic device with at least one signal emitter and detector, providing a second opto-electronic device with at least one signal detector, and providing a third opto-electronic device with one signal emitter. A first end of a first coherent fiber bundle structure is optically connected to the first opto-electronic device emitter. The second end of the first coherent fiber bundle structure is optically connected to the second opto-electronic device such that the detector on the second opto-electronic device and an emitter on the first opto-electronic device are optically connected. A first end of a second coherent fiber bundle structure is optically connected to the at least one signal detector on the first opto-electronic device. The second end of the second coherent fiber bundle structure is attached to at least one emitter on the third opto-electronic device. Optical signals emitted from the at least one signal emitter of the first and third opto-electronic devices and are transmitted through the coherent fiber bundle structures of the optical signal transmission device to the optically connected signal detectors.
In another aspect, the invention provides an end-bonded structure, used as a optical signal transmission device, to connect optical signal emitters and detectors. The end-bonded structure is comprised of a first group of at least two coherent fiber bundles, each having first and second ends, and a second group of at least two coherent fiber bundle structures, each having first and second ends. The second ends of the first and second fiber bundle groups are side-connected together. The side-connected second ends of the first group are optically connected to the second ends of the second group, with the second ends of the second group being collectively rotated approximately 90° about a common axis relative to the second ends of the first group. The first ends of the first and second stacks are adapted for connection to opto-electronic devices.
In another aspect, an optical signal transmission device is provided having at least four coherent fiber bundle plates. The plates are positioned to form a rectilinear structure having a top face, a bottom face and four side exterior faces. The side exterior faces are adapted for coupling to opto-electronic devices. At least two of the stacked coherent fiber bundle plates provide optical communication between two adjacent side exterior faces of the structure. Additionally, at least two of the coherent fiber bundle plates provide optical communication between non-adjacent side exterior faces.
In another aspect, another configuration of an optical signal transmission device used to connect opto-electronic chips is provided. The optical signal transmission device is constructed from at least three coherent fiber bundle plates, the plates each having five exterior side faces, a top face and a bottom face. The exterior side faces of the at least three coherent fiber bundle plates are arranged to provide optical communication between at least two pairs of adjacent exterior side faces, as well as at least one pair of non-adjacent exterior side faces.
In another aspect, another configuration of an optical signal transmission device is provided. The device comprises at least six coherent fiber bundle plates in a stacked arrangement having six exterior sides, a top face and a bottom face. The coherent fiber bundle plates are arranged to provide optical communication bet
Chiarulli Donald M.
Levitan Steven P.
Robinson Matthew
Tatah Karim
Boutsikaris Leo
Juba John
Schott Fiber Optics Inc.
Volpe and Koenig P.C.
LandOfFree
Opto-electronic multi-chip modules using imaging fiber bundles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Opto-electronic multi-chip modules using imaging fiber bundles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Opto-electronic multi-chip modules using imaging fiber bundles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3170756