Opto-electronic devices and systems based on brillouin...

Optical: systems and elements – Optical amplifier – Raman or brillouin process

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S199200, C359S199200, C359S327000, C250S227110

Reexamination Certificate

active

06178036

ABSTRACT:

ORIGIN OF THE INVENTION
This invention was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 U.S.C. 202) in which the Contractor has elected to retain title.
FIELD OF THE INVENTION
The present invention relates to electro-optic devices and systems, and more specifically, to photonic systems for performing selective sideband amplification, conversion from phase modulation to amplitude modulation, frequency multiplication, signal up- and down-conversion, and coherent optical signal processing.
BACKGROUND OF THE INVENTION
Acoustic waves can cause variations of the density of a medium in which they travel. The density variations can effect optical gratings. Scattering of an electromagnetic wave by such acoustic gratings in an optical medium is known as “Brillouin scattering”. The frequency of the scattered electromagnetic wave in the Brillouin scattering is shifted with respect to that of the original electromagnetic wave due to the Doppler effect by the motion of acoustic waves.
Energy is exchanged in the Brillouin scattering between the optical medium and the electromagnetic wave. Depending on the relative directions of the acoustic wave and the electromagnetic wave, the frequency of the scattered electromagnetic wave may be down-shifted to a lower frequency (i.e., “Stokes shift”) or a higher frequency (i.e., “anti-Stokes shift”).
Stimulated Brillouin scattering (“SBS”) is a nonlinear optical effect which occurs when a coherent electromagnetic wave with an intensity above a certain threshold level is used as a pump in a Brillouin scattering process. See, for example, A. Yariv, Chapter 18, Quantum Electronics, 2nd ed., 1975 (John Wiley & Sons). The nonlinear interaction of the optical medium and the coherent optical pump wave at a frequency &ngr;
p
generates an acoustic wave due to the electrorestrictive effect. This acoustic wave forms a moving acoustic grating in the medium which moves in the same direction of the optical pump wave. The grating scatters the pump wave.
In general, multiple scattered waves are generated by the grating. However, due to the phase-matching restraints, the strongest scattered wave is the back-scattered wave which propagates in the opposite direction of the pump wave. Thus, the frequency &ngr;
B
of the back-scattered optical wave from the acoustic grating is down-shifted relative to the pump wave frequency &ngr;
p
by &ngr;
D
=2nu
a
/&lgr;
p
due to the Doppler effect, where u
a
is the velocity of the acoustic wave in the medium, n is the refractive index of the medium, and &lgr;
p
is the wavelength of the optical pump wave. The remainder of the input pump wave transmits through the medium.
When the input optical power exceeds the SBS threshold, a significant portion of the input power is transferred into the back-scattered optical wave. This results in a saturation behavior in the transmitted wave, i.e., the power of the transmitted wave will no longer increase linearly with the input power. The SBS threshold is known to be linearly proportional to the spectral linewidth of the optical pump wave. Therefore, an optical pump wave with a narrow linewidth can be used to reduce the SBS threshold. For example, in many commercial silica fibers, a SBS threshold of several milliwatts may be achieved by using a pump wave at about 1.3 &mgr;m.
When a narrow-band seed signal in the opposite direction of the pump wave with the same frequency of the back scattered wave at &ngr;
B
=(&ngr;
p
−&ngr;
D
) is injected into an optical medium, the interaction between the seed signal and the pump wave can significantly enhance the acoustic grating initially induced by the pump wave. This effect, in turn, increases the back-scattering of the pump wave into the seed signal and thereby effectively amplifies the seed signal. Therefore, the influence of the seed signal converts the spontaneous Brillouin scattering into a stimulated Brillouin scattering, at a pump power much below the SBS threshold. The stimulated back scattering light adds up in phase with the seed signal. This process is known as Brillouin amplification. See, for example, G. P. Agrawal,
Nonlinear Fiber Optics,
Academic Press, San Diego (1989), Chapter 9.
Brillouin scattering and amplification in optical fibers has been investigated for optical communication applications. See, for example, Olsson and Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth”, Journal of Lightwave Technology, Vol. LT-5, No. 1, pp. 147-153 and Tang, “Saturation and spectral characteristics of the stokes emission in the stimulated Brillouin process”, Journal of Applied Physics, vol. 37, pp. 2945-2955 (1966). Stimulated Brillouin processes was considered by many as unsuitable for digital fiber optical communication systems at least partially due to its narrow gain bandwidth and high spontaneous emission noise. Many conventional optical communication systems are designed with provisions to suppress the Brillouin scattering in fibers as noise.
SUMMARY OF THE INVENTION
The present invention includes a use of the Brillouin scattering in an optical medium to effect selective sideband amplification for photonic devices and systems.
One embodiment of the invention includes a first signal light source that generates an optical carrier signal, a modulator for imposing information on the carrier signal and generating sidebands around the carrier frequency, an optical medium having an electrorestrictive effect, and a second pump light source that generates an optical pump signal in the opposite direction of the carrier signal within the optical medium. The frequency of the Brillouin signal is tuned to align with a selected frequency sideband or to be near the selected sideband within the bandwidth of the Brillouin gain profile to amplify the selected sideband.
Photonic RF signal mixing can be achieved by using the Brillouin selective sideband amplification. A sideband around a carrier frequency in a carrier signal produced by a modulation of a local oscillator can be aligned with the Brillouin signal to be amplified by tuning the relative frequency between the pump light source and the signal light source. Since the down or up converted signal is the beat between the amplified local oscillator sideband and a signal sideband, the converted signal is also amplified. A conversion gain can be realized when the selectively amplified local oscillator sideband is larger than the carrier signal by the amplification. In addition, when a higher order location oscillator sideband is selectively amplified, a harmonic signal up- or down-conversion can be effected. Furthermore, the amplified sideband is automatically phase and frequency locked to the signal light source with a stability determined by the modulation driving signal.
Another aspect of the Brillouin selective sideband amplification is conversion of a phase modulation into an amplitude modulation by selectively amplifying a phase-modulated sideband. Since amplitudes of the amplified sideband and the opposite-phase counter part on the other side of the carrier signal are no longer the same, the beat signals between the symmetric sidebands and the carrier signal are only partially canceled to produce a net amplitude modulation signal. High phase-to-amplitude conversion can be achieved with this scheme due to the Brillouin gain. When a high order sideband in a phase-modulated signal is selectively amplified, a beat signal between the sideband and the carrier signal has a frequency that is a multiplication of the phase modulation frequency by a factor of the order number of the amplified sideband. This effects a frequency multiplication.
Yet another aspect of the Brillouin selective sideband amplification is pulse generation and manipulation. This may achieved, for example, by producing multiple Brillouin signals with multiple pump light sources at different wavelengths in resonance with the in-phase modulation sidebands in a carrier signal. The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Opto-electronic devices and systems based on brillouin... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Opto-electronic devices and systems based on brillouin..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Opto-electronic devices and systems based on brillouin... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2459180

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.