Optimizing nano-filler performance in polymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C522S114000, C522S117000, C522S135000, C522S137000, C524S447000, C524S445000, C604S508000, C604S509000

Reexamination Certificate

active

06833392

ABSTRACT:

The present invention, relates to nano clays for use in thermoplastic/thermoset polymer materials, wherein the nano clay may be combined with another chemical ingredient, such as a crosslinking agent, to thereby provide a unique and overall synergistic effect on mechanical property performance.
Polymer composites comprising a polymer matrix having one or more additives such as a particulate or fiber material dispersed throughout the continuous polymer matrix are well known. The additive is often added to enhance one or more properties of the polymer. Useful additives include inorganic layered materials such as talc, clays and mica of micron size.
A number of techniques have been described for dispersing the inorganic layered material into a polymer matrix. It has been suggested to disperse individual layers, e.g., platelets, of the layered inorganic material, throughout the polymer. However, without some additional treatment, the polymer will not infiltrate into the space between the layers of the additive sufficiently and the layers of the layered inorganic material will not be sufficiently uniformly dispersed in the polymer.
To provide a more uniform dispersion, as described in U.S. Pat No. 4,889,895 sodium or potassium ions normally present in natural forms of mica-type silicates and other multilayered particulate materials are exchanged with organic cations (e.g., alkylammonium ions or suitably functionalized organosilanes) thereby intercalating the individual layers of the multilayered materials, generally by ionic exchange of sodium or potassium ions. This intercalation can render the normally hydrophilic mica-type silicates organophilic and expand its interlayer distance. Subsequently, the layered material (conventionally referred to as “nanofillers”) is mixed with a mononmer and/or oligomer of the polymer and the monomer or oligomer polymerized. The intercalated silicate is described as having a layer thickness of 7 to 12 [Angstrom] and an interlayer distance of 30 [Angstrom] or above.
In WO 93/11190, an alternative method for forming a composite is described in which an intercalated layered, particulate material having reactive organosilane compounds is dispersed in a thermoplastic polymer or vulcanizable rubber. Yet additional composites containing these so-called nanofillers and/or their methods of preparation are described in U.S. Pat. Nos. 4,739,007; 4,618,528; 4,528,235; 4,874,728; 4,889,885; 4,810,734; 4,889,885; 4,810,734; and 5,385,776; German Patent 3808623; Japanese Patent J02208358; European Patent applications 0,398,551; 0,358,415; 0,352,042; and 0,398,551; and J. Inclusion Phenomena 5, 473 (1987); Clay Minerals, 23, (1988), 27; Polym. Preprints, 32 (April 1991), 65-66; Polym. Prints, 28, (August 1987), 447-448; and Japan Kokai 76,109,998.
Nano clay fillers are also available based on tiny platelets of a special type of surface modified clay called montmorillonite. These surface treatments have been aimed for use with nylon-6 and polypropylene. The two manufacturers in the United States, Nanocor and Southern Clay Products, both point to increases in flexural modulus, heat distortion temperature and barrier properties.
Furthermore, attention is hereby directed to U.S. Pat. Nos. 5,993,415 and 5,998,551 which, although not relating to nano clay fillers, describe the use of crosslinking promotors to improve properties of a thermoplastic material, and, as to be discussed below, are relevant to the present invention. Accordingly, the teachings of these patents are incorporated by reference.
In sum therefore, even with the numerous described composites and methods, it still remains desirable to have an improved composite and method for forming polymer composites derived from a multilayered additive (nano clays) to thereby create composites having improved properties over the polymer on its own.
Accordingly, it is an object of this invention to explore the suitability of combining the nano clays with an additional chemical component to establish whether or not the observed mechanical properties of a thermoplastic host resin are improved beyond the use of only a nano clay filler.
More specifically, it is an object of this invention to combine nano clays with a suitable crosslinking promotor, and to establish a synergistic effect of such promotors with the nano clay on the mechanical properties of a host thermoplastic matrix.
In addition, it is an object of this invention to apply the nano clays and additional chemical component described above (promotor) to develop an improved method to prepare materials suitable for use in medical product applications, such as balloon catheters and catheter shaft production.
By way of summary, the present invention comprises a composite comprising a polymer matrix having, dispersed therein, a nano clay in combination with a crosslinking promotor. By use of the term “nano clay” it is noted that such clays are inorganic minerals which have a high aspect ratio with at least one dimension of the particles therein in the nanometer range. By use of the term, “crosslinking promotor” it relates to any chemical compound that will promote crosslinking between those polymer chains that comprise the polymer matrix. Accordingly, it can be appreciate that “crosslinking promotors” include those functionalized chemical compounds that provide the requisite activity, upon activation (irradiation or heat) to chemical react and bond with the polymer chains to form covalent crosslinks between the surrounding polymer chains.
Preferably, the crosslinking promotor is trallylisocyanurate or trallylcyanurate, although those skilled in the art will recognize that other types of crosslinking promotors would be suitable and would fall within the broad aspects of this invention. In addition, preferably, the promotor is present in the polymer matrix at a level of about 0.5% to 10% (wt.), and at any increment therebetween in 0.1% increments.
As noted, the nano clays are inorganic minerals with a high aspect ratio as one dimension of the particles herein falls in the nanometer range. A variety of references are available to those skilled in the art which discuss and describe nano clays suitable therein. In such regard, the clays having a plate structure and thickness of less than one nanometer are the clays of choice. The length and width of the clays may fall in the micron range. Aspect ratios of the preferred clays are in the 300:1 to 1,500:1 range. In addition, the surface area of the exfoliated clays is preferably in the range of 700 m
2
/gram. Nano clays that may be suitable herein include hydrotalcite, montmorillonite, mica fluoride, octasilicate, and mixtures thereof. Nano clay is incorporated herein at a level of 1-10% (wt.) as well as any increment therebetween, in 0.1% increments.
Montmorillonite nano clays have a plate like structure with a unit thickness of one nanometer or less. This clay also has an aspect ratio in the 1000:1 ranges.Because montmorillonite clay is hydrophilic, it is not compatible with most polymers and should be chemically modified to make its surface more hydrophobic. The most widely used surface treatments are amonium cations which can be exchanged for existing cations already on the surface of the clay. The treated clay is then preferably incorporated into the polymer matrix herein, by melt mixing by extrusion, more preferably, twin-screw extrusion. In addition, at such time, and as noted above, the crosslinking promotor can also be readily combined with the clay during the melt mixing process. Those skilled in the art will therefore recognize that, in general, any type of melt mixing process can be applied to prepare the composites of the present invention, including extrusion, direct injection molding, the use of a two-roll mill, etc.
With regards to the development of crosslinking herein, as noted, a crosslinking promotor is employed, and preferably, the formulations herein are exposed to irradiation. Preferably, the irradiation dosage is between about 1-20 MR, as well as any numerical value and/or increm

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optimizing nano-filler performance in polymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optimizing nano-filler performance in polymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimizing nano-filler performance in polymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3310487

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.