Optimized network resource location

Electrical computers and digital processing systems: multicomput – Miscellaneous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S203000, C709S226000, C709S233000, C709S234000, C709S235000, C709S236000, C709S237000, C709S239000, C709S240000, C709S241000

Reexamination Certificate

active

06185598

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to replication of resources in computer networks.
BACKGROUND OF THE INVENTION
The advent of global computer networks, such as the Internet, have led to entirely new and different ways to obtain information. A user of the Internet can now access information from anywhere in the world, with no regard for the actual location of either the user or the information. A user can obtain information simply by knowing a network address for the information and providing that address to an appropriate application program such as a network browser.
The rapid growth in popularity of the Internet has imposed a heavy traffic burden on the entire network. Solutions to problems of demand (e.g., better accessibility and faster communication links) only increase the strain on the supply. Internet Web sites (referred to here as “publishers”) must handle ever-increasing bandwidth needs, accommodate dynamic changes in load, and improve performance for distant browsing clients, especially those overseas. The adoption of content-rich applications, such as live audio and video, has further exacerbated the problem.
To address basic bandwidth growth needs, a Web publisher typically subscribes to additional bandwidth from an Internet service provider (ISP), whether in the form of larger or additional “pipes” or channels from the ISP to the publisher's premises, or in the form of large bandwidth commitments in an ISP's remote hosting server collection. These increments are not always as fine-grained as the publisher needs, and quite often lead times can cause the publisher's Web site capacity to lag behind demand.
To address more serious bandwidth growth problems, publishers may develop more complex and costly custom solutions. The solution to the most common need, increasing capacity, is generally based on replication of hardware resources and site content (known as mirroring), and duplication of bandwidth resources. These solutions, however, are difficult and expensive to deploy and operate. As a result, only the largest publishers can afford them, since only those publishers can amortize the costs over many customers (and Web site hits).
A number of solutions have been developed to advance replication and mirroring. In general, these technologies are designed for use by a single Web site and do not include features that allow their components to be shared by many Web sites simultaneously.
Some solution mechanisms offer replication software that helps keep mirrored servers up-to-date. These mechanisms generally operate by making a complete copy of a file system. One such system operates by transparently keeping multiple copies of a file system in synch. Another system provides mechanisms for explicitly and regularly copying files that have changed. Database systems are particularly difficult to replicate, as they are continually changing. Several mechanisms allow for replication of databases, although there are no standard approaches for accomplishing it. Several companies offering proxy caches describe them as replication tools. However, proxy caches differ because they are operated on behalf of clients rather than publishers.
Once a Web site is served by multiple servers, a challenge is to ensure that the load is appropriately distributed or balanced among those servers. Domain name-server-based round-robin address resolution causes different clients to be directed to different mirrors.
Another solution, load balancing, takes into account the load at each server (measured in a variety of ways) to select which server should handle a particular request.
Load balancers use a variety of techniques to route the request to the appropriate server. Most of those load-balancing techniques require that each server be an exact replica of the primary Web site. Load balancers do not take into account the “network distance” between the client and candidate mirror servers.
Assuming that client protocols cannot easily change, there are two major problems in the deployment of replicated resources. The first is how to select which copy of the resource to use. That is, when a request for a resource is made to a single server, how should the choice of a replica of the server (or of that data) be made. We call this problem the “rendezvous problem”. There are a number of ways to get clients to rendezvous at distant mirror servers. These technologies, like load balancers, must route a request to an appropriate server, but unlike load balancers, they take network performance and topology into account in making the determination.
A number of companies offer products which improve network performance by prioritizing and filtering network traffic. Proxy caches provide a way for client aggregators to reduce network resource consumption by storing copies of popular resources close to the end users. A client aggregator is an Internet service provider or other organization that brings a large number of clients operating browsers to the Internet. Client aggregators may use proxy caches to reduce the bandwidth required to serve web content to these browsers. However, traditional proxy caches are operated on behalf of Web clients rather than Web publishers.
Proxy caches store the most popular resources from all publishers, which means they must be very large to achieve reasonable cache efficiency. (The efficiency of a cache is defined as the number of requests for resources which are already cached divided by the total number of requests.)
Proxy caches depend on cache control hints delivered with resources to determine when the resources should be replaced. These hints are predictive, and are necessarily often incorrect, so proxy caches frequently serve stale data. In many cases, proxy cache operators instruct their proxy to ignore hints in order to make the cache more efficient, even though this causes it to more frequently serve stale data.
Proxy caches hide the activity of clients from publishers. Once a resource is cached, the publisher has no way of knowing how often it was accessed from the cache.
SUMMARY OF THE INVENTION
This invention provides a way for servers in a computer network to off-load their processing of requests for selected resources by determining a different server (a “repeater”) to process those requests. The selection of the repeater can be made dynamically, based on information about possible repeaters.
If a requested resource contains references to other resources, some or all of these references can be replaced by references to repeaters.
Accordingly, in one aspect, this invention is a method of processing resource requests in a computer network. First a client makes a request for a particular resource from an origin server, the request including a resource identifier for the particular resource, the resource identifier sometimes including an indication of the origin server. Requests arriving at the origin server do not always include an indication of the origin server; since they are sent to the origin server, they do not need to name it. A mechanism referred to as a reflector, co-located with the origin server, intercepts the request from the client to the origin server and decides whether to reflect the request or to handle it locally. If the reflector decides to handle the request locally, it forwards it to the origin server, otherwise it selects a “best” repeater to process the request. If the request is reflected, the client is provided with a modified resource identifier designating the repeater.
The client gets the modified resource identifier from the reflector and makes a request for the particular resource from the repeater designated in the modified resource identifier.
When the repeater gets the client's request, it responds by returning the requested resource to the client. If the repeater has a local copy of the resource then it returns that copy, otherwise it forwards the request to the origin server to get the resource, and saves a local copy of the resource in order to serve subsequent requests.
The selection by the reflector

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optimized network resource location does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optimized network resource location, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimized network resource location will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2580511

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.