Optimization of a cooling water system of a polyolefin...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymerizing in two or more physically distinct zones

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S179000, C062S185000, C062S201000, C165S065000

Reexamination Certificate

active

06235852

ABSTRACT:

The invention relates to a process for cooling polymerization reactors in the preparation of polyolefins, the polymerization being carried out in a first reactor and in at least one further reactor, the further reactor or reactors being connected downstream of the first reactor and each being cooled by an internal cooling circuit in which a cooling medium circulates.
Processes of said type are disclosed, for example, by SRI International Report No. 128A, Menlo Park, Calf., USA 1993, in which the ®Spheripol process for preparing polypropylene is described. According to this, olefins can be converted to polyolefins in an exothermic reaction under pressure and in the presence of a catalyst at temperatures between 70 and 85° C. (e.g. HDPE). In what is termed the liquid-phase processes, the monomer here frequently serves as suspension medium for the polymer. As polymerization reactors, use is preferably made of loop reactors in modern high-performance production units, owing to the favorable surface/volume ratio. The exothermic heat of reaction is given off to an internal cooling water circuit via the heat-exchange surfaces of the reactors. The internal circuit is cooled by adding colder water. Accordingly, the same amount of water, which is then heated by the heat of reaction, must be removed from the internal cooling circuit. Usually, the water is fed to and removed from the internal cooling circuits as what is termed “cycle water” via an external cooling circuit. In this external cooling circuit, the heat of reaction taken up by the cycle water is given off to heat consumers in the process and, via heat-exchange surfaces, to external cooling water, e.g. the works recooling water, to reach the low flow temperature required for the reactors.
For broad variation of product properties, frequently, two or more reactors are operated on the product side in cascade (connected one after the other); on the water side they are operated in parallel. Although water-side cascade operation is known per se, it is not employed in the known processes, since it is expected that with identical reactions in identical vessels, the cooling water inlet temperatures would have to be identical, furthermore, there would here be the risk that temperature fluctuations in the reactor are transmitted to the second reactor or the following reactors.
It has now surprisingly been found that, apparently due to an aging behavior of the catalyst, in the second reactor and in each further reactor, the reaction conversion rate decreases and that therefore the following previously unnoticed effects occur: owing to this aging behavior, in the first reactor, significantly more heat of reaction needs to be removed than in the following reactors. If the heat-exchange surfaces of the reactors are about equal in size, then, at the same flow temperature &thgr;′
ext
of the external cooling water—significantly more cooling water must be pumped into the internal circuit of the reactor I then into that of reactor II, reactor III, etc. In addition, the water inlet temperature &thgr;
1
′ and water outlet temperature &thgr;
1
″ of the reactor I are lower than for the following reactors. With increasing production rate, the water inlet temperature &thgr;′ and outlet temperature &thgr;″ then decrease for all the reactors, while the feed rate of external water increases—particularly for reactor I.
Since the water inlet and outlet temperatures &thgr;′, &thgr;″ of the reactors must fall with increasing plant throughputs if more heat is to be transferred, under otherwise identical conditions, either both the temperature &thgr;′
ext
of the external cooling circuit must be reduced and its water flow rate F
ext
must be increased and/or the cooling water rate flowing from the external cooling circuit to the individual reactor must be increased. The return flow temperature &thgr;″
ext
of the external cooling water likewise decreases with increasing plant throughputs.
Flow temperature &thgr;′
ext
setting is dependent on the process-internal heat utilization and on the temperature of the external cooling water. This means that: in the summer months, when the temperatures of the external cooling water (e.g. river water or recooling water) increase, the plant capacity must be reduced.
The temperature level of the backflow of the external cooling circuit becomes too low for process-internal heat consumers with increasing plant throughputs. Increasing the external water flow rate is limited, for example by the maximum circulation rates of the two internal circuits.
Owing to these disadvantages, the capacity of a polyolefin production unit cannot be utilized completely.
The object therefore underlying the invention is to improve the process mentioned at the outset in such a manner that these advantages are abolished.
The object is achieved by an inventive process of the type mentioned at the outset, which process comprises feeding cooling medium from the cooling circuit of the first reactor into the cooling circuit of at least one further reactor and taking off the same amount of cooling medium from the cooling circuit of this reactor, cooling it and recirculating it to the cooling circuit of the first reactor.
The invention thus relates to a process for cooling polymerization reactors in the preparation of polyolefins, the polymerization being carried out in a first reactor and in at least one further reactor, the further reactor or reactors being connected downstream of the first reactor and each being cooled by an internal cooling circuit in which a cooling medium circulates, which comprises cooling medium being fed from the cooling circuit of the first reactor into the cooling circuit of at least one further reactor and the same amount of cooling medium being taken off from the cooling circuit of this reactor, cooled and recirculated into the cooling circuit of the first reactor.
In a preferred embodiment, the feed takes place under temperature or flow rate control, the setpoint value being preset on the basis of a temperature or a wanted flow rate. As cooling medium, use is preferably made of water. The cooling medium can be cooled in an external cooling circuit which itself can be cooled with cooling water directly or indirectly. The temperatures of the cooling media in the individual cooling circuits are preferably in the ranges from 30 to 80° C. (cooling circuit of the first reactor), from 30 to 80° C. (cooling circuits of the further reactors) and from 20 to 40° C. (external cooling circuit).
The invention further relates to an apparatus for carrying out this process, and to a process for preparing polyolefins, in particular polypropylene.
The process according to the invention is described in more detail below with reference to a possible embodiment which is shown in the drawing as a process flow chart.
Two polymerization reactors, reactor I
1
and reactor II
2
are connected to one another via a pipe
3
. The monomer, other additives and the catalyst pass via feeds
4
,
5
into the reactor I
1
, in which the polymerization is started, from there, together with the polymer formed, via the pipe
3
into the reactor II
2
in which the polymerization advances further and from the reactor II
2
through an outlet
6
to a further reactor or for further processing. However, the reaction can also be started in an upstream so-called start reactor (babyloop). The two reactors I
1
, II
2
are equipped with cooling jackets
7
,
8
which are integrated into internal cooling circuits I
9
, II
10
and in which a cooling medium circulates by means of pumps
11
,
12
. The two internal cooling circuits I
9
, II
10
are connected via pipes
13
,
14
,
15
,
16
to an external cooling circuit
17
, via which cooled cooling medium can be fed at a flow temperature &thgr;′
ext
using a pump
18
and controllable valves
19
into the internal cooling circuits I
9
, II
10
. The external cooling circuit comprises heat exchangers
20
,
21
via which heat of reaction can be giv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optimization of a cooling water system of a polyolefin... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optimization of a cooling water system of a polyolefin..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimization of a cooling water system of a polyolefin... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453332

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.