Photocopying – Projection printing and copying cameras – Multicolor picture
Reexamination Certificate
2000-11-10
2002-12-24
Adams, Russell (Department: 2851)
Photocopying
Projection printing and copying cameras
Multicolor picture
C355S040000, C347S015000, C347S043000, C358S501000, C358S502000, C358S530000, C358S515000
Reexamination Certificate
active
06498638
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to optimization apparatus for photographic image data with a data input device an image data optimization device and an output device. It further relates to a photographic copier or printer with an optimization apparatus and a process corresponding to the optimization apparatus and a program for carrying out the process.
The term “photography” as used herein refers to the (especially permanent) capturing of images produced by electromagnetic radiation (especially light) with means suited therefor (for example photographic apparatus with film, digital photographic camera with CCD chip, film camera, video camera and so on).
The field of the present invention relates to the processing of photographic image information, which represents the photographically produced image. The photographic image information, for example, is conventionally captured or stored on a film. The photographic image information so stored can then be converted into digital photographic image data, for example by way of a scanner. But, the photographic image information can also be only digitally captured right from the start, for example by way of a digital camera. It can then be electronically stored, for example, (CD-ROM, DVD) and can, for example, be transmitted through a network (for example LAN or Internet).
BACKGROUND ART
The present invention relates to the processing of photographic image data (in the following also called first image data) which represent images produced by photography. The photographic image data are processed with a data processor in such a way that they are suited for picture production. The picture production can thereby be carried out, for example, on a monitor, on (light sensitive) photographic paper by suitable exposure or by way of a printer or by way of another photographic copier apparatus. However, the quality of the representation of the photographic image data is often unsatisfactory whether done conventionally, for example, on photographic paper or as slide or by way of a monitor (for example LCD screen or TV screen) or printer.
A significant cause for the unsatisfactory quality resides in the capturing and storage of the images or the photographic image information. The causes herefor reside, for example, in the optical capturing of the image by the camera, namely, for example, in the quality of the lens system, in the operation of the camera by the user, namely, for example, incorrect exposures, in the quality of the image capturing means, namely the film or the CCD, in the illumination of the photographic object, and so on. The less than optimal conditions during the image capturing and storage of the photographic image information result in so-called color shifts, which means a fixed, preselected color shade is differently captured and stored depending on the color density or brightness. Thus, a color shade shift results relative to the actual color shade to be represented. In other words, the captured and stored image information does not correspond with respect to the color values to the color values of the photographed object. If the photographic image information is further processed prior to producing a picture, for example, by scanning a film with a scanner, this can result in further changes of the color values.
The photographic image data are conventionally obtained from photographic image information by way of color filters. This is the case for example, with a scanner but also with the digital photographic camera. The data so obtained describe thereby the intensity of different colors of an image point. Conventionally, the representation is done with so-called RGB image data in the so-called RGB color space, or by RGB stands for red, green and blue. Respectively one coordinate of the color space is thereby reserved for one color, i.e. for red, green or blue.
SUMMARY OF THE INVENTION
It is an object of the invention to optimize photographic image data, such as, for example, the RGB image data. This means that errors made during the photographic capturing and/or storage and/or processing of the photographic image information (especially color value changes) should be reversed, if possible.
This object is achieved by the features of the independent claims. Preferred embodiments are apparent from the dependent claims.
Preferably an optimization apparatus is provided in accordance with invention which optimizes (digital) photographic image data. The optimization apparatus carries out an optimization transformation. The optimization transformation corresponds to a combination of a first transformation which brings the first image data from the first color space into the second color space, the above described correction transformation and a second transformation, which transforms the first image data corrected in the second color space into a third color space, which is suited for the picture production. The third color space may correspond to the first or second color space or may be any other color space. The third color space may also be different from the second color space. The process in accordance with invention also carries out such an optimization transformation together with the improvements described below. The program in accordance with invention is able to run especially on the computer or a workstation and carries out the process steps in accordance with invention.
The optimization apparatus includes a (digital) data input device for the input of first image data which are the photographic image data. The data input device can be, for example, a data interface, a modem or a scanner. If it is a scanner, the first (photographic) image data are, for example, captured by scanning a film which represents the photographic image information to be processed. Alternatively, the first image data can also be obtained, for example, through a network. These first image data are present in a first color space. Typically, this is a color space wherein the coordinates respectively describe one color i.e., for example, the RGB color space. The first image data represent an image or several images which have been photographically captured. Subsequent to the data input device is the optimization device in accordance with invention in which the first image data are optimized. Subsequent to the optimization device is then the data output device in order to output the optimized first image data which now optimally represent the image or the images. The data output device can also be a data interface for a modem. The data interface is, for example, connected with a computer or a photographic copier or with a network. However, the data output device can also be a picture producing device, which on a medium produces a picture based on the image data. For example, it can be a printer which based on image data prints the optimized picture. The printing can be carried out, for example, on normal paper or light sensitive paper by suited printers or other photographic copiers. The optimized first image data thereby describe image information which is processed by the data output device. This processing can include especially an adaptation and thereby change of the optimized first image data with regard to the output apparatus. Depending on whether the image data are intended for a monitor or printer of a specific type and depending on the dynamic range of the output medium (photographic paper, normal paper, monitor) the optimized image data can be manipulated and adapted to the dynamic range in order to achieve the best compromise with regard to the output medium. For example, the optimized image data can be digitally overlaid with a mask which brightens or darkens certain image regions in order to carry out an adaptation to the output medium and to the subjective human observation capabilities.
For optimization of the first image data, the latter must be corrected. The inventors have found that it is of significant advantage for the execution of such a correction when it is described by a transformation which corresponds
Kraft Walter
Zolliker Peter
Adams Russell
Brown Khaled
Gretag ImagingTrading AG
Weingarten Schurgin, Gagnebin & Lebovici LLP
LandOfFree
Optimization apparatus for photographic image data does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optimization apparatus for photographic image data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimization apparatus for photographic image data will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2953975