Optically active quinoline carboxylic acid derivatives with...

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06649763

ABSTRACT:

This patent application claims a benefit of priority from Korean Patent Application No. 1999/18158 filed May 20, 1999 and Korean Patent Application No. 2000/24657 filed May 9, 2000, through PCT Application Serial No. PCT/KR00/00487, the contents of each of which are incorporated herein by reference.
TECHNICAL FIELD
The present invention relates to optically active quinoline carboxylic acid derivatives represented by following formula 1, their pharmaceutically acceptable salts, their solvates, and a process for the preparation thereof. More specifically, the present invention relates to optically active quinoline carboxylic acid derivatives containing 4-aminomethyl-4-methyl-3-(Z)-alkoxyimino pyrrolidine substituents at 7-position of the quinolone nuclei.
Wherein
Q is C—H, C—F, C—Cl, or N;
Y is H, or NH
2
;
R is a straight or branched alkyl group of C
1
-C
4
, an allyl group, or a benzyl group; and
* represents optically pure chiral carbon atom.
BACKGROUND ART
Quinolone antibacterial agents show high therapeutic efficacy even when being administered orally as well as can be made available for parenteral dosage forms. At present, quinolone antibacterial agents are prevalently used to treat the diseases caused by bacterial infection. In general, quinolone antibacterial agents are classified into three generations according to chemical structure, activity and pharmacokinetics (David C. Hooper and John S. Wolfson. Quinolone Antibacterial Agents; American Society for Microbiology: Washington D.C., 1993: pp 1-2). The first-generation quinolone antibacterial agents were usually used for the treatment of urinary tract infection and were restricted to the treatment of the diseases caused by Gram-negative bacteria. It was not until the second-generation emerged that quinolone antibacterial agents could be come to exert their activities against some Gram-positive pathogens as well as Gram-negative pathogens. The second-generation quinolone antibacterial agents were also greatly improved in the pharmacokinetics of absorption and distribution. The third-generation quinolones, which have been recently developed, can be administered as once daily dosing form because of long half life in case of lomefloxacin and fleroxacin, and show excellent pharmacokinetics and highly potent activity against Gram-positive bacteria in case of sparfloxacin, trovafloxacin, moxifloxacin and gatifloxacin. However, these conventional quinolone antibacterial agents are still weakly potent against the repression of streptococci and enterococci and quinolone-resistant strains are increasingly generated.
Most of conventional quinolone antibacterial agents have piperazine derivatives substituted at the 7-position but it was known that pyrrolidine derivatives were introduced into the 7-position in order to enhance the antibacterial activity against Gram-positive strains (Sanchez, J. P., et al.,
J. Med. Chem
., 31, 983 (1988)). The quinolone antibacterial agents in which pyrrolidine derivatives are substituted at the 7-position were certainly improved in the antibacterial activity against Gram-positive strains, but suffered from a problem in that the in vivo antibacterial activity did not correspondently reflected in vitro activity because of their poor water solubility and pharmacokinetic profiles.
Introduction of halogens into quinolone antibacterial agents at the 8-position is known to increase their antibacterial activity, but also to generate phototoxicity (Sanchez, J., et al.,
J. Med. Chem
., 35, 361-367 (1992)).
Korean Pat. No. 174,373 discloses a racemate which corresponds to the compound to be targeted in the present invention. However, its optical isomers, that is, isomers with pure (+) or (−) optical activity are not described. Nowhere are mentioned preparation or separation methods of the optical isomers. Neither are pharmacological effects of each isomer taken into account, nor is a description given of the relation between the racemate and its optical isomers.
Generally, two optically pure compounds which are in mirror image-relationship to one another possess the same physical properties, except one-optical activity. In detail, the two enantiomers are completely or almost identical in, for example, melting point, boiling point, solubility, density and refractive index, but completely opposite in optical rotation. Since the two enantiomers rotate the plane of polarized light in equal but opposite directions, no net optical rotation is observed when they are mixed. In other words, the optica rotation of a racemate is zero in theory and near zero in practicality.
The difference in optical rotation, that is, in the spatial arrangement of four groups connected to the chiral atom, i.e., configuration, frequently causes a significant distinction between one enantiomer and its racemate in physiological activity and toxicity. However, since there is no consistent relationship between configurational difference and its influences, it is actually impossible to deduce them from the prior arts. For instance, levofloxacin, a (−) optical isomer, is known to show two-fold higher antibacterial activity than ofloxacin, a racemate, and 8-128 fold higher than the other enantiomer, (+)-ofloxacin (
Drugs of the future
, 17 (7): 559-563 (1992)). An example of a relation between configuration and toxicity may be referred to cisapride (Stephen C. Stinson,
Chemical & Engineering News
, 76 (3), 3 (1998)). Stephen C. Stinson revealed that the racemate (±)-cisapride, when used in combination with other drugs, may cause a toxic effect whereas (+)-norcisapride does not, concluding that (−)-cisapride is causative of the toxicity of the racemate. Korean Pat. No. 179,654 describes 1-(5-hydroxyhexyl)-3-methyl-7-propylxanthine, showing that its R-(−) isomer is at least three-fold more potent in cerebral blood flow-stimulating action and three-fold longer in the duration time of activity than the S-(+) isomer. However, in the case of temafloxacin, its racemate and its enantiomers show no differences in antibacterial activity and pharmacokinetics (Daniel T. W. Chu, et al.,
J. Med. Chem
., 34, 168-174 (1991)).
As aforementioned, due to unexpected physiological differences, between a racemate and its optically pure enantiomers (i.e. activity, P.K., toxicity, etc.), a racemate must be resolved into its corresponding enantiomers. As can be recognized from the above, the use of a racemate, as it is, can be problematic though its one enantiomer shows excellent pharmacological effects and no toxicity, if the other enantiomer has any toxicity. This phenomenon can be frequently found in many pharmacologically effective compounds. In addition, when a pharmacologically effective racemate is used as it is, the two enantiomers are administered at the same dose. Which If one enantiomer is pharmacologically inactive, only results in imposing a load on the body. Therefore, it is very important to resolve a racemate into pure compounds for better pharmacological effects and lower toxicity.
On the basis of aforementioned prior arts, through the intensive and thorough research on quinolone antibacterial agents, repeated by the present inventors found that 4-aminomethyl-4-methyl-3-(Z)-alkoxyimino pyrrolidine derivatives causing optical activity, when being attached to 7-positions of quinolone nuclei, endows optically active quinoline carboxylic acid derivatives with highly potent antibacterial activity and excellent pharmacokinetic properties.
Hence, the optically active quinoline carboxylic acid derivatives according to the present invention show greatly improved antibacterial activity against Gram-positive bacteria, especially against methicilline-resistant staphylococci and increasing quinolone-resistant strains, compared with their racemates, their counterpart enantiomers and the using quinolones. Also, according to the present invention the compounds are excellent in pharmacokinetic profiles and hardly cause phototoxicity in spite of bearing halogen atoms at 8-position.
DISCLOSURE OF INVENTION
The prese

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optically active quinoline carboxylic acid derivatives with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optically active quinoline carboxylic acid derivatives with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optically active quinoline carboxylic acid derivatives with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3163916

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.